Skip to main content

An optimal structure that accommodates both a ring and a binary tree

  • Interconnection Problems
  • Conference paper
  • First Online:
Distributed Memory Computing (EDMCC 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 487))

Included in the following conference series:

Abstract

A class of novel networks called ringtree network is presented in which any ringtree of n nodes can accommodate an n-node ring and an n-node complete binary tree. Ringtree is optimal in respect of the embeddability of ring and complete binary tree in the sense that it has the lowest degree and the minimum number of communication links and the embeddings have no dilation and expansion. Like a binary tree, it permits a simple and efficient layout which is important in VLSI design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Annaratone et al. The Warp computer: Architecture, implementation and performance. IEEE Trans. on Comput., C-36(12), 1987.

    Google Scholar 

  2. H. R. Arabnia and M. A. Oliver. A Transputer network for the arbitrary rotation of digitised images. The Computer Journal, 30(5):425–32, 1987.

    Article  Google Scholar 

  3. D. A. Bailey and J. E. Cuny. An efficient embedding of large trees in processor grids. In Proc. of Int. Conf. on Parallel Processing, pages 819–923, August 1986.

    Google Scholar 

  4. S. Borkar et al. iWarp: An integrated solution to high-speed parallel computing. Tech. Rep. CMU-CS-89-104, Comput. Sci. Dept, CMU, January 1989.

    Google Scholar 

  5. B. Chazelle. Computational geometry on a systolic chip. IEEE Trans. on Computers, C-33(9):774–85, 1984.

    Article  Google Scholar 

  6. M. Cosnard and Y. Robert. Systolic Givens factorization of dense rectangular matrices. Int. J. Computer Math., 25:287–98, 1988.

    Article  Google Scholar 

  7. M. A. Bonncelli et al. A VLSI tree machine for relational databases. In Proc. 10th Computer Architecture Symp., pages 67–73, June 1983.

    Google Scholar 

  8. D. Gordon. Efficient embedding of binary trees in VLSI arrays. IEEE Trans. on Computers, C-36(9):1009–18, 1987.

    Article  Google Scholar 

  9. E. Horowitz and A. Zorat. The binary tree as an interconnection network: Applications to multiprocessor systems and VLSI. IEEE Trans. on Comput., C-30(4), 1981.

    Google Scholar 

  10. J. Jarosz and J. R. Jaworowski. Computer tree—The power of parallel computations. The Computer Journal, 29(2):103–8, 1986.

    Article  Google Scholar 

  11. H. T. Kung. The Warp computer: a cost-effective solution to supercomputing. An Annual Report, Comput. Sci. Dept., CMU, 1988.

    Google Scholar 

  12. C. E. Lerserson. Systolic priority queues. In Proc. Caltech Conf. on VLSI, pages 199–214, January 1979.

    Google Scholar 

  13. G. Li and T. F. Coleman. A new method for solving triangular systems on distributed-memory message-passing multiprocessors. SIAM J. Sci. Stat. Comput., 10(2):382–96, 1989.

    Article  MathSciNet  Google Scholar 

  14. P. P. Li and A. J. Martin. The Sneptree—A versatile interconnection network. In Proc. of Int. Conf. on Parallel Processing, pages 20–7, 1986.

    Google Scholar 

  15. Y-C. Lin and F-C. Lin. A family of systolic arrays for relational database operation. In Systolic Arrays, W. Moore et al Eds., pages 191–200. Adam Hilger, 1987.

    Google Scholar 

  16. R. Melhem. A systolic accelerator for iterative solution of sparse linear systems. IEEE Trans. on Comput., 38(11):1591–5, 1989.

    Article  MathSciNet  Google Scholar 

  17. C. Rieger et al. ZMOB: A. new computing engine for AI. In Proc. 7th IJCAI-81, pages 955–60, 1981.

    Google Scholar 

  18. Y. Robert, B. Tourancheau, and G. Villard. Data allocation strategies for the Gauss and Jordan algorithms on a ring of processors. Inf. Proc. Letters, 31:21–9, 1989.

    Article  MathSciNet  Google Scholar 

  19. A. L. Rosenberg. Graph embeddings 1988. Lecture Notes in Computer Science, pages 160–9, 1988.

    Google Scholar 

  20. M. R. Samatham and D. K. Pradhan. The de bruijn multiprocessor network: A versatile parallel processing and sorting network for VLSI. IEEE Trans. on Comput., 38(4):567–81, 1989.

    Article  MathSciNet  Google Scholar 

  21. S. J. Stolfo and D. E. Shaw. DADO: A. tree-structured machine architecture for production systems. In Proc. Nat. Conf. on AI AAAI-82, pages 242–6, 1982.

    Google Scholar 

  22. J. Ullman. Computational aspects of VLSI. Computer Science Press, Inc, 1984.

    Google Scholar 

  23. H. Y. Youn and A. D. Singh. On implementing large binary tree architectures in VLSI and WSI. IEEE Trans. on Comput., 38(4):526–37, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arndt Bode

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, X., Ge, Y. (1991). An optimal structure that accommodates both a ring and a binary tree. In: Bode, A. (eds) Distributed Memory Computing. EDMCC 1991. Lecture Notes in Computer Science, vol 487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032937

Download citation

  • DOI: https://doi.org/10.1007/BFb0032937

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53951-3

  • Online ISBN: 978-3-540-46478-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics