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Abs t r ac t .  We are addressing the problem of matching images of scene 
or of objects when a large collection of reference objects is considered. 
The paper addresses also the issue of dealing with illumination change 
and camera position changes. Our approach is firstly based on the use of 
invariants. Invariants have to be computed locally so that the resulting 
values will not affected by partial occlusion or accidental highlights. In- 
variants proved to be a very discriminant piece of information and stored 
in a hash table they allow efficient indexing of visual shape. Final recog- 
nition can be performed using simply a robust voting technique or can 
be improved using Bayesian decision. 

1 I n t r o d u c t i o n  

This paper  addresses the problem of matching an image to a large set of reference 
images. The query image is a new (partial) image of an object imaged in the 
database,  and it might be taken from a different viewing angle or under different 
illumination conditions. 

1.1 R e l a t e d  w o r k  

Existing approaches in the literature are of two types: those that use geometric 
features of an object; and those that rely on the luminance properties. 

Geometric approaches model objects by 3D properties such as lines, vertices 
and ellipses and try to extract these features in order to recognise the objects. 
General surveys on such model-based object recognition systems are presented in 
[4, 9]. These methods generally comprise three components : matching, pose com- 
putation, and verification. The key contribution of several recognition systems 
has been a method of cutting down the complexity of matching. For example 
tree search is used in [6] and recursive evaluation of hypotheses in [I]. 

The novelty of indexing is that the feature correspondence and search of 
the model database are replaced by a look-up table mechanism [15, 25]. The 
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major difficulty of these geometry based approaches is that they use human- 
made models or require CAD-like representations. These representations are 
not available for objects such as trees or paintings; in the case of "geometric" 
objects the CAD-like features used are difficult to extract from the image [8]. 
An alternative approach is to use the luminance information of an object. The 
idea is not to impose what has to be seen in the image (points, lines ...  ) but 
rather to use what is really seen in the image to characterise an object. The 
first idea was to use colonr histograms [31]. Several authors have improved the 
performance of the original colour histogram matching technique by introducing 
measures which are less sensitive to illumination changes [12,19, 20, 30]. Instead 
of using color, greyvalue descriptors can also be used for histograms [26]. 

An alternative idea was to to use the reference image itself for the correspon- 
dance, but in order to reduce the size of space, these images were projected on 
the principal eigenspaces. This approach was first used in [32] for face recogni- 
tion and then in [18] for general objects. A different reduction is proposed in [33] 
who learns features which best describe the image. It is also possible to compute 
local greyvalue descriptors at points of a global grid. The descriptors are either 
steerable filters [23] or Gabor filters [35]. In the case of partial visibility grid 
placement gets difficult, as the grid cannot be centred. 

1.2 The proposed approach 

The approach proposed here holds in four keywords: invariant local signatures 
used for indexing the set of potentiel matches; the matching process can be made 
robust by exploiting the redondance in the images. 

Almost all of the existing luminance approaches are global and therefore 
have difficulty in dealing with partial visibility and extraneous features. On the 
other hand, geometric methods have difficulties in describing "non-geometric" 
objects and they have problems differentiating between many objects. Local 
computation of image information is necessary when dealing with partial visi- 
bility; photometric information is necessary when dealing with a large number 
of similar objects and the luminance information is very discrimant, as it known 
by all the people doing matching by correlation. The approach described here 
uses local greyvalue or color features computed at interest points as displayed in 
figure 1. 

The invariant characteristics used in this work are based on differential grey- 
value invariants [14, 24] and they are extended to color in section 4. This ensures 
invariance under the group of displacements within an image, and it is easily 
extended toward an affine transformation of luminance in section 2.2. A multi- 
scale approach [17, 34] makes this characterisation robust to scale changes, that 
is to similarity transformations. 

A voting algorithm makes retrieval robust to miss-matches as well as outliers. 
Outliers are caused by miss-detection of feature points and extraneous features. 
Semi-local constraints reduce drastically the number of miss-matches. 

Such an approach allows the handling of partial visibility and transformations 
such as image rotation and scaling. Experiments have been conducted on a set 
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Fig. 1. Representation of an image. 

of more than a thousand images, some of them very similar in shape or texture. 
The high recognition rate is the result of careful design in which robustness to 
outliers and tolerance to image noise were considered at each step. The use of a 
priori information of the distribution of these invariant characteristic signatures 
allows to improve the overall results, and this will be introduced and discussed 
in section 5. 

2 C o m p u t i n g  l o c a l  g r e y  l e v e l  i n v a r i a n t  

Local image signature could be computed around every pixel. As this is too 
space consuming, many authors compute them on a sparse grid. Our experiences 
showed instability when the local signatures are not computed at the right loca- 
tion, so the invariants were computed at interest point locations. These points 
are extracted using the Harris detector [13] which proved to be the most stable 
one. 

2.1 T h e  local  j e t  inva r i an t  

T h e  local  j e t :  The image in a neighbourhood of a point can be described by 
the set of its derivatives. Their stable computation is achieved by convolution 
with Gaussian derivatives [17, 34]. This set of derivatives has been named "local 
jet" by Kcenderink [14] and defined as follows: 

Let I be an image and cra given scale. The "local jet" of order N at a point 
x = (x l ,x2)  is defined by 

JN[I](x, ff) = {Li~.../,~(x,~) t (x,~) E I x ~{+ ;n : O, . . .  ,N} 

in which Lil...i~ (x, a) is the convolution of image I with the Gaussian derivatives 
Gi1_~i~ (x, o" ) and ik E {Xl,X2}. 

The c~ of the Gaussian function determines the quantity of smoothing. This 
o- also coincides with a definition of scale-space which will be considered later 
on. (7 will be referred to as the size of the Gaussian. 
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T h e  d i f fe ren t i a l  invar ian t s :  Following the consideration that,  even if there 
are no invariant in images coming from 3D scenes, the similarity group capture 
up to the first order to variation of shape in an image (see [5]). As translation is 
already set by selecting point feature, we have to cancel out rotation and scaling 
in our differential descriptors. 

We first consider the case of rotation. Differential invariants were studied the- 
oretically by Kcenderink [14] and Romeny et al.[10]. A complete set of invariants 
can be computed that locally characterises the signal. The set of invariants used 
in this work is limited to third order. This set is stacked in a vector, denoted by 
~. In equation (1) vector ~ is given in tensorial notation - the so-called Einstein 
summation convention. Notice that the first component of ~ represents the av- 
erage luminance, the second component the square of the gradient magnitude 
and the fourth the Laplacian. 

v [ 0 . . 8 ]  = 

L 
LiLI 

LiLij Lj 
Lii 

Lij Lit 
~ij (LjkILiLkLt - Ljk~L~L1LI) 

L~IjLjLkLk - LIjkL~LjL~ 
-c~j Lj k l Li L~ Lt 

L~j k L.~ Lj Lk 

(1) 

with Li being the elements of the "local jet" and c~j the 2D antisymmetric 
Epsilon tensor defined by ~12 = -E21 = 1 and En = ~22 = 0. 

2.2 Extens ion  to scale and luminane changes 

To be insensitive to scale changes the vector of invariants has to be calculated 
at several scales. A methodology to obtain such a multi-scale representation of 
a signal has been proposed in [17, 34]. 

For a function f ,  a scale change a can be described by a simple change of 
variables, f ( x )  = g(u) where g(u) = g(u(x ) )  = g (ax ) .  For the nth derivatives of 
f, we obtain f (n ) (x )  = ang(n)(u).  Theoretical invariants are then easy to derive, 

for example ](k)(~) is such an invariant. 
However for such a computation the size of the Gaussian has to be adjusted; 

this implies a change of the calculation support. As it is impossible to compute 
invariants at all scales, scale quantisation is necessary for a multi-scale approach. 
Often a half-octave quantisation is used. The stability of the characterisation has 
proven this not to be sufficient. Experiments have shown that  matching based 
on invariants is tolerant to a scale change of 20% (see [28]). We have thus chosen 
a scale quantisation which ensures that the difference between consecutive sizes 
is less than 20%. As we want it to be insensitive to scale changes up to a factor 
of 2, the size ~r varies between 0.48 and 2.07, its values being: 0.48, 0.58, 0.69, 
0.83, 1.00, 1.20, 1.44, 1.73, 2.07. 
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K the scene is locally planar, and has locally a regular reflection property, and 
if the camera has a linera response in intensity, then the change of illumination 
can be expressed locally as a linear fonction (this wilt be discussed more in 
details in 4); let I and I r be surface before and after the illumination change, so 
I t = a I  + b for some unkonwn parameter a and b. 

It is straightforward to see that  the differential invariants are not sensitive 
to b, except for the first component which is average value which has to be dis- 
carded. Then, computing ratio of derivatives allows to directly have components 
which are invariant to a, and this leads to 7 independant invariants, as we had 
to cancel out two more parameters in the model. 

3 T h e  i n d e x i n g  a n d  r e t r i e v a l  

3.1 T h e  basic  vo t i ng  a l g o r i t h m  

Similarity between vectors has to be estimated using Mahalanobis distance. For 
this purpose the variance-covariance matrix has been estimated by collecting 
data  when traking interest points on different scenes. 

Then a database is constructed containing a set {Mk} of models. Each model 
Mk is defined by the vectors of invariants {];j} calculated at the interest points 
of the model images. During the storage process, each vector Fj is added to the 
database with a link to the model k for which it has been computed. Formally, 
the simplest database is a table of couples 02j, k). 

Recognition consists of finding the model M~ which corresponds to a given 
query image I,  that  is the model which is most similar to this image. For this im- 
age a set of vectors {Fl} is computed which corresponds to the extracted interest 
points. These vectors are then compared to the ]2j of the base by computing: 
dM(]21,1;j) = dl,j V(I, j) .  If this distance is below a threshold t according the X 2 
distribution, the corresponding model gets a vote. 

As in the case of the Hough transform [29], the idea of the voting algorithm 
is to sum the number of times each model is selected. This sum is stored in the 
vector T(k). The model that  is selected most often is considered to be the best 
match : the image represents the model M k for which/c = arg maxk T(k). 

Figure 2.a shows an example of a vector T(k) in the form of a histogram. 
Image 0 is correctly recognized. 

M u l t i - d i m e n s i o n a l  index ing :  Without indexing the complexity of the voting 
algorithm is of the order of 1 × N where l is the number of features in the query 
image and N the total number of features in the data  base. As N is large (about 
150,000 in our tests) efficient data  structures need to be used. 

In order to speed up the search, the vectors were stored in a variant of k-d 
trees. Each dimension of the space is considered sequentially. Access to a value in 
one dimension is made through fixed size 1-dimensional buckets. Corresponding 
buckets and their neighbours can be directly accessed. Accessing neighbours is 
necessary to take into account uncertainty. A bucket is extended in the next 
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Fig. 2. Result of the voting algorithm : the number of votes are displayed for each model 
image. Image 0 is recognised correctly, a) direct voting, b) using semi-local constraints 

dimension if the number of values stored is above a threshold. Therefore the 
data structure can be seen as a tree with a depth which is at most the number 
of dimensions of the stored vectors. The complexity of indexing is of the order 
of 1 (number of features of the query image). 

This indexing technique leads to a very efficient recognition. The database 
contains 154030 points. The mean retrieval time for our database containing 
1020 objects is less than 5 seconds on a Sparc 10 Station. 

3.2 Semi-local const ra in ts  

At this stage, no structural has been taken into account for the image, due to 
our locM strategy and we have seen that such a poor strategy provides already 
acceptable results. Errors occurs mainly when different images share very similar 
local descriptors, as it is the case for the aerial images. Califano [7] suggested 
that using longer vectors decreases this probability. Yet the use of higher order 
derivatives for our invariants is not practical. Another way to decrease the prob- 
ability of false matches and still stick with our local approach, is to use local 
shape configuration as shown in figure 3. 

For each feature (interest point) in the database, the p closest features in the 
image are selected. We require that at least 50% of the neighbours match. In 
order to increase the recognition rate fnrther~ a geometric constraint is added: 
The angles between neighbour points have to be equal, as for example the angles 
al  and a2 in figure 3. The impact of the geometrical coherence and the semi-local 
constraints is displayed in figure 2.b. The score of the object to be recognised is 
now much more distinctive, at the cost of loosing many potential matches. 

3.3 Expe r imen ta l  resul ts  

Conducted for an image database containing 1020 images, experiments have 
shown the robustness of the method to image rotation, scale change, small view- 
point variations, illumination changes, partial visibility and extraneous features. 
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a database entry and a match  

its p closest features 

Fig. 3. Semi-local constraints : neighbours of the point have to match and angles have 
to correspond. Note that not all neighbours have to be matched correctly. 

The obtained recognition rate is above 99% for a variety of test images taken 
under different conditions. 

Content o/the database: The database includes different kinds of images such 
as 200 paintings, 100 aerial images and 720 images of 3D objects (see figure 4). 
3D objects include the Columbia database. These images are of a wide variety. 
However, some of the painting images and many of the aerial images are very 
similar. This leads to ambiguities which the recognition method is capable of 
dealing with. 

In the case of a planar 2D object, an object is represented by one image in 
the database. This is also the case for nearly planar objects as for aerial images. 
A 3D object has to be represented by images taken from different viewpoints. 
Images are stored in the database with 20 degrees viewpoint changes. 

Recognition results: Some examples illustrate the conditions under which the 
method operates correctly. A systematic evaluation for a large number of test 
images taken under different conditions is then shortily presented. 

Firstly in the following three examples are displayed, one for each type of 
image. For all of them, the image on the right is stored in the database. It is 
correctly retrieved using any of the images on the left. Figure 5 shows recognition 
of a painting image in the case of image rotation and scale change. It also shows 
that correct recognition is possible if only part of an image is given. 

In figure 6 an example of an aerial image is displayed. It shows correct re- 
trieval in the case of image rotation and if part of an image is used. In the case 
of aerial images we also have to deal with a change in viewpoint and extraneous 
features. Notice that buildings appear differently because viewing angles have 
changed and cars have moved. 

Figure 7 shows recognition of a 3D object. The object has been correctly 
recognised in the presence of rotation, scale change, change in background and 
partial visibility. In addition, there is a change of 10 degrees of viewpoint position 
between the two observations. Notice that the image of the object has not only 
been recognised correctly, but that the closest stored view has also been retrieved. 
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Fig. 4. Some images of the database. The database contains more 1020 images. 
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Fig. 5. The image on the right is correctly retrieved using any of the images on the 
left. Images are rotated, scaled and only part of the image is given. 

Fig. 6. The image on the right is correctly retrieved using any of the images on the 
left. Images are seen ~om a different viewpoint (courtesy of Istar). 
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Fig. 7. The image on the right is correctly retrieved using any of the images on the 
left. The 3D object is in front of a complex background and only partia~y visible. 

Rotation Scaling Viewpoint Viewpoint 30% partial 20% partial 10% partial 
[change aerial change 3D visibility visibility visibility 

100% 100~ 99% 99.8~ 100% 95% 90.5 % 

Table 1. Percentage of good retrieval (£rt guess) under different conditions. 

Systematic evaluation of retrieval The method is evaluated for different trans- 
formations - image rotation, scale change, viewpoint variations - as well as for 
partial visibility. It has to be noticed that all the changes mentionned does not 
come from artificial motion in the images, but from new view taken each time. 
One particular case is the partial visibility: subimages were taken from the intial 
image in the case of painting, and from a new view for the case of aerial images. 
Average correct retrieval are summarized in Table 1; a retrieval is considered as 
correct if the first guess for the retrieved image is the correct one. For a more 
detailed evaluation the reader is refered to [28]. 

4 T h e  c o l o r  c a s e  

As shown in the previous section, the direct use of the grey-level information in 
the images provide very discriminant and powerful local descriptors. It is thus 
natural to wonder whether the use of color would not provide even better results. 

4.1 The  local je t  in color 

The first problem when using color images is to choose a representation system 
for color information. In the present work, the RGB representation has been 
chosen as the most convenient: It is directly available on most image devices 
and it allows to find simple models of color variation (see next section). In 
this representation, a color image is composed of three monochromatic images, 
corresponding to each of the three R, G or B channels. 

From such an image, it is possible to compute a grey-level image, using a 
well established formula [22]: G = 0.2125R + 0.7154G + 0.0721B. Interest points 
can be detected from this image, using the Harris detector, as it is done with 
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E ii ............ U / i  
Fig. 8 .6  images with light intensity variation (numbered from 1 to 6). 

Model 

M1 

M2 

M3 

M4 

M5 

Median and maximum of errors between two images 
Im. l e t 2 I m ,  l e t 3 l m ,  le t41Im, l e t 5 I m ,  l e t 6 ,  
13.1909 38.3275 
44.2041 !94.3769 
5.568 5.67147 
33.643 34.8631 
5.56175 5.56269 
33.6486 33.9358 
5.55503 5.62512 
33.5326 34.5064 
5.54143 5.53818 
33.5563 33.5722 

60.1664 
141.128 
15.80588 
!31.5682 
!5.65976 
!32.1776 
5.74105 
31.6982 
5.62793 
32.1895 

83.1204 
186.786 
5.88565 
33.1802 
5.73528 
33.223 
5.78087 
34.1667 

107.75 
247.348 
6.04758 
39.7918 

5.51266 
33.3612 
5.82957 
39.7582 

J5.68712 5.45086 
33.8315 32.9997 

Table 2. Evaluation of the different models. 

ordinary grey level images. Given these points, it is then possible to compute a 
local jet  for each of the three original R, G and B images of the color image. 
This gives a total of 30 = 3 x 10 signal characteristics for each interest point. 

4.2 I l l u m i n a t i o n  M o d e l s  

Obtaining image descriptors invariant to illumination variations implies that  an 
illumination model is known first. Two sources of variations can be distinguished: 
The first one is a color or intensity variation of the light source, that  will be 
called an internal variation, and the secondone is due to a variation of position 
or orientation of the source and will be called an external variation. 

M o d e l s  for  I n t e r n a l  V a r i a t i o n s  Several models of internal variations have 
been compared. They  describe how the color vector p : (r ,g,  b) of an image 
pixel is transformed in p '  = (r', g', b I) at each image pixel when the light source 
internally changes (T  is a translation vector, D a diagonal matr ix and M a 3 × 3 
matrix): MI: p'=p M2: p'=Dp M3: p'=Dp+T M4: p'=Mp M5: p'=Mp+T 

The performance of each model was first evaluated on real images, and then 
we tried to determine which ofthe estimated parameters were really significant. 
Model Evaluation. To ewluate  the different models we took 6 images representing 
a same scene. Between the shots the light intensity was the only variation (see 
fig. 8). 



64 

In order to compute the different model parameters saturated pixels were 
removed, and a least median square method based on the SVD decomposition 
was used. For each pair of images the median and the maximum of errors between 
the first image and the second image corrected by the model were computed. 
Table 2 presents the results. 

According to these results modele M5 appears to have the best quality / 
complexity ratio. Six additional parameters are needed to obtain slightly better 
results. The diagonal model without translation is good when the images are not 
too different. 
Test of Estimated Parameters. More parameters usually provide better results, 
but these additional parameters may estimate noise rather than the model itself. 
To check if it is the case, the method proposed by Florou was used [11]. 

This method is based on a statistical test. The noise is assumed to be centered 
and for each parameter a confidence interval is computed for a confidence level 

of 95%. The radius of this interval is: R(p,)  = x / X 2 i 9 5 % , m ) ~ / ~ v / ~ i ,  where 
V . -  

X2(95%,m) is the value of X 2 distribution for the given confidence level, m 
is the number of estimated parameters, f is the sum of the errors, n is the 

2 is the variance of the estimated parameter. If 0 E number of pixels and a i 
~ - R(pi) ,pl  + R(pi)], 0 appears to be an estimation as good as p~ for the i-th 
parameter. In such a case the estimation p~ is considered not to be significant. 

The significance of model M5 parameters has been tested with images of 
different sizes. The following table provides the minimal size for which each 
parameter of model M7 has been estimated significantly. 

parameter  all  a12 a13 a21 a22 a23 t a32 a33 t r  t a tb 
size 5 60 125 60 20 251 a3190 90 30 30 15 15 

It appears that a significant estimation of all the parameters, and especially 
of the non diagonal terms, requires large sub-images. On the other hand the 
parameters present in the model M5 are significantly estimated even with small 
sub-images. 

Mode l s  for Ex te rna l  Varia t ions  In the same fashion as Finlayson proposed 
the diagonal model for internal variations, he proposes a very simple model for 
external variations [2]: This model states that each color vector is multiplied by 
a scale factor. The bad news is that this factor depends of the relative position 
and orientation of the light source and the illuminated point, and thus varies 
from pixel to pixel. The full model contains a scale factor for each pixel. 

4.3 Local  color invariants  

There are two main ways to exploit the models presented in the previous section. 
The first one consists in deriving a normalization scheme: each image is trans- 

formed in order to be independent from the illumination conditions. According 
to the illumination model taken into account, different normalization techniques 
are possible. An example is presented on Fig. 11. 
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To stay in the global frame of the present paper, we focus the presentation on 
local color invaxiauts. The basic information used to compute these invaxiants axe 
the 30 components of the color local jet. The deal is to combine these components 
in such a way that the result is invaxiant under illumination and/or geometric 
variations. 
Scale invariance. As with grey level images, scale invariance may be obtained 
using a multi-scale approach : the local jet is computed for several values of a. 
Invariants are computed at these different scales, and their comparison provides 
the scale factor between points of different images. 
Rotational Invariance. Rotation is defined by a single parameter: Its angle. Thus 
there should exist 29 independent invariants: Each channel provides 9 of them, 
two other ones can be chosen among the 3 following ones: 

Illumination and Rotational Invarianee. The model M3 was chosen as the ref- 
erence model in the latter. To compute illumination imr~riants from the set of 
rotational inv~riants just presented 6 parameters have to be eliminated. The 
translational parameters tr, t~, and tb are eliminated by suppressing the 3 in- 
vaxiants R, G, and B. The 3 diagonal terms are eliminated by dividing each 
invaxia~t by the correct power of the gradients and by suppressing the 3 gradi- 
ents from the invariant list. For example one of the invariants presented before 
become: 

R~G~ + P~G~ 
(R~R~ + R~R~)~/Z(G~G~ + G~G~) ~/~ 

Fig. 9. An image of each o{ the rota- 
tional test sequences. 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

 !ili! !i i !!!!!iiiiii i i!iii!!iiii 

Fig. 10. 2 images of ~ sequence with a 
wriation of light intensity. 

Results with a Scene Rotation. The rotational invariants were tested using two 
sequences of 30 images taken 6 degrees apart (see Fig. 9). In both cases the axis 
of rotation is the optical axis of the camera. The first image of each sequence was 
matched with all the other image of the sequence using the rotational invaxiants, 
providing more than 99% of correct matches. 
Results for Light Internal Variations. A sequence of 10 images representing a 
journal cover was used (see Fig.10). Between the shots only the light intensity 
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Fig. 11. 2 images with an external light variation, and the same images locally nor- 
malized. 

has changed. The first image was matched to the other ones, using the rotational 
invaria~ts first, providing 73% of correct matches, then using the invariants for 
both illumination variations and rotations, providing 92.7% of correct matches. 
With illumination variations appears the problem of saturated pixels, which 
explains a lower rate of correct matches. 
Results with external light variations. In this last test a sequence of 7 images was 
used (see Fig. 11). Between the shots the light source moved around the scene. 
The first image was matched to the other ones using two techniques. First the 
inv&riants for rotations and illumination variations were used directly, although 
they are clearly out of their domain of validity. Second a normalization tech- 
nique was used (normalized images are chown on the right of Fig. 11), followed 
by the use of the same invariants . The rate of correct matches is 71% with- 
out normalization and 80% with normalization. The effect of normalization is 
twofold: There were more points detected, and these points were detected in a 
more repeatable way, and the percentage of correct matches is higher. 

5 E x t e n s i o n  u s i n g  a p r o b a b i l i s t i c  m o d e l  

The basic indexing algorithm described in section 3 assumes that all vectors are 
equally probable, therefore according equal importance to all matches. However, 
this is not the case: We observed that the invariants collected in our grey-level 
image data base are far from evenly distributed. An rough histrogra.m was used 
to estimate the distribution, as the large number of data was not sufficient for 
making an analytical estimation in such a still larger space. 

5.1 The  basic Bayesian  m o d e l  

In a study on the distribution of the measure in some "receptive fields", Schiele 
[27] derived a Bayesian model which allowed the distribution of the measures to 
be taken into account. Here we take a similar approach, deriving a model which 
uses the a priori knowledge of the distribution of the invariants in the matching 
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process. But, as this work is concerned with matches or potential matches, we 
have to derive a more sophisticated model in order to take into account the 
matching process. 

Let Q be the query image and R be a database image being considered as 
a match candidate. It is assumed that Q and R will have a large number of 
features in common if they match. Q has n(Q) interest points, and R has n(R) 
such points. From the n(Q) features of Q, {ml}, i E I is the set of the features 
which are matched with features in R. Each mi is a feature vector of Q that has 
a matching feature vector fk appearing in R. 

We want to evaluate P(R[{mi)). Using Bayes formula we get 

P(Iml}IR)'P(R) (2) 
P(RIIm'}) = P(Im,}) 

Assuming that the individual matches are independent, this translates to 

1-I~er P(miIR)P(R) 
P(Rl{m'}) = [I,er P(m,) (3) 

P(mi) is the probability that the i-th feature of Q has one match with n(R) 
raudom features. 

This approach considers only the effect of matches, but the fact that many 
features fail to match must also be considered. To incorporate this let { ~ j } , j  e J 
be the set of of features that failed to be matched. Formula (3) can thus be 
extended: 

rliei P(m~IR) YIjeJ P(mJ IR)P(R) 
P(Rr{m~}, {~j}) = 1-I, ex P(m~) YIjeJ P(mi) (4) 

5.2 Pos te r io r  P robab i l i t y  of  R e t r i e v e d  Images  

Matching also occurs randomly, inducing false matches, and this was not taken 
into account in the previous discussion. If we assume that Q is a subimage of 
R under some new viewing condition, the k-th feature of Q might be a feature 
of R with the previously defined probability a. It could be also a feature that 
occured due to some random process with the density probability of R. 

Let p~ be the probability of the k-th random feature vector of Q to appear in 
image R. p~ is estimated in the particular image R. The probability that it might 
miss all the n(R) features in R is therefore (1 -p~)n(n).  Thus the corresponding 
probability of matching one of these features is 1 - (1 _p~),~(n). Combining this 
two events which are exclusive, the likelihood of match (a correct or a false one) 
becomes: 

P(m, IR ) = a + (1 - a)(1 - (1 - p~),~(R)) (5) 



68 

Similarly the probability of occurence of the j-th feature vector of Q will be 
p~ (B for data base) and the a priori probability of match with n(R) feature 
vector is then 

P(mj) =/3 + (1 -/3)(1 - (1 _ p~),~(R)) 

Substituting this into equation 3 results in: 

1-Iie~ (a + (1 - a)(1 - (1 - p~),,(a))) P(R) 
P(RI{m, } ) = [I~ei(/3 + - ( i - - ' ~ - ~ - - - ( ' f - ~  

The probability for the non matched point is handled in a similar way. 

(6) 

5.3 Expe r imen t s  

The experiments reported here are based on querying aerial images only as these 
are the more difficult ones to process: They are similar in texture and shape, 
as roofs of old houses look very similar seen from the sky. The query images 
were taken from an airplane from a position different from the reference images 
(about 20 degrees change in the almost vertical viewing direction). Altitude was 
the same, so the scaling effect can be neglegted. However due to the change of 
viewing direction, the images differ: some facades are visible, illumination has 
changed, etc. 

Exper lments :  The value for a was set to 0.5 and 0.35. The value for fl was set 
to ~ as the data base has 1020 images. 

The experiments were conducted in the following way: for each query image, 
a snbimage is extracted which represents x% of the initial image as it is taken as 
the query, x ranges from 100 to 9. The rank of the right answer was measured as 
the output. As the standard deviation of such answer is high for small window, 
random selection of such windows were multiplied in order to get significant 
mean values. 

Four different matching strategies were investigated: direct voting and use 
of the semi-local constraints, and on the top of the strategies, the use of the 
Bayesian models. Fig. 12 displays the behavior of the different strategies. The 
abcissa represents the size of the subwindows considered for the request (per- 
centage of the image surface). The ordinate shows the mean rank of the correctly 
matching image. 

The four curves displayed correspond, from top to bottom, to the simple 
voting on invaxiant, the Bayesian model with a = 0.5, the Bayesian model with 
a = 0.35, and the use of semi local context. 

The results show that there is an clear adwntage to using the Bayesian 
decision rule for the case of simple voting. The behavior of the Bayesian decision 
rule is not too much affected by the value of a. This gain is more limited for 
smaller windows where the number of matched features decreases largely. 

The use of semi-local constraints is much more discriminant and provide the 
best result, and introduction of the Bayesian model almost does not improve 
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Fig. 12. Behavior of voting vs posterior probability 

its quality This can be forcasted from the analysis of formula (5): when p~ is 
very small, equation (5) simplifies to P(mi[R) = a, i.e. to the case when false 
matches are not considered. This is exactly what the use of semi-local constraint 
does. 

6 D i s c u s s i o n ,  c o n c l u s i o n  

This paper has clearly illustrated how invariant signatures are powerfull index for 
retrieving images. Invariance is however not always a solution and two approxi- 
mations were used here in order to be able to compute such invariant signatures: 
firstly limited camera motion for which the similarity group is sufficient for mod- 
eling the geometric image changes, secondly a simplification of the illumination 
model in order to be able to compute significant brightness invariants. 

The signatures are discriminant enough that a simple voting strategy allows 
to find the right image from a fragment taken under different conditions. However 
this strategy in largely improved by the introduction of geometric constraints, the 
so-called semi-local constraints, or by introducing a Bayesian decision criterion. 

This approach has been widely experimented under different conditions: illu- 
mination changes, change of viewpoints, zooming, etc. and the results are impres- 
sive, even when using only the gray level values. Extensive tests with color image 
has right now not been performed; the corresponding data base is under construc- 
tion and can be reached at ~. inrialpes, fr/movi/pub/Images/index .html. 

The main limitation we observed during experiments were the large changes 
in the invariants caused by strong shadows on details, for instance, the shadow 
around a car in an aerial image. For such purpose robust descriptors should be 
developped like for instance what Zabih developped for stereomatching [36]. A 
preliminary step in this direction can be found in [16]. 
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Such a technique allows to consider for instance object modeling by using 
a large collection of images instead artificial models. But the major  application 
is probably in image data  base. Even if the experiments conducted here were 
not realistic with respect of data  base size, the kind of difficult images we were 
processing, in particular the similarity in texture and representation (see the 
second row in Fig. 4) allows us to forcast it applicabitity to large set of images. 
The key issue we forsee when dealing with 106 images is the indexing problem. 
With such a size, the data  structure we are using has to be stored on disks, 
and right now" the structure has too many links for allowing efficient use on 
secondary memory. No solution for such uncertain index in such large space has 
been provided yet. Right now solutions mainly focussed on searching for the 
nearest neighbors (see for instance [21] and [3]). 
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