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Abstract .  Recently, the concept of ordered graphs has been introduced 
and it was shown that isomorphism of ordered graphs can be solved in 
quadratic time. In the present paper we consider a special case of the 
subgraph isomorphism problem for ordered graphs, called marked sub- 
graph isomorphism. An algorithm of O(ralm2) complexity is developed 
for finding all marked subgraph isomorphisms from a graph G1 to an- 
other graph G2, where rn~ and m2 are the number of edges in G1 and 
G2, respectively. We demonstrate the usefulness of our Mgorithm by ap- 
plying it to solving the subcircuit extraction problem. It turns out that 
our approach is much more efficient than traditional methods based on 
general subgraph isomorphism techniques. 

1 I n t r o d u c t i o n  

Graphs are a very powerful and universal tool for epresenting various aspects of 
the real world. Depending on the requirements of a concrete application, there 
are numerous methods for the analysis of graphs, such as finding the shortest 
path, detecting Hamiltonian cycles, coloring the edges of graphs, and many more. 
A very important problem is the detection of subgraph isomorphism. 

Many problems in graph theory are NP-complete, including the subgraph 
isomorphism problem. By imposing certain restrictions on the underlying graphs, 
however, it is often possible to derive algorithms of polynomial-time complexity. 
Examples of such restricted graphs are graphs with bounded valence [9], planar 
graphs [3], and rooted ordered trees [1]. Alternatively, we may also search for 
approximate solutions [8]. Recently, the authors [6] have investigated the class 
of so-called ordered graphs, in which the vertices incident to a vertex have a 
unique order. Graph isomorphism of ordered graphs can be solved in quadratic 
time [7] and has found applications in the detection of object symmetries [4, 5] 
and computer vision [6]. 

In the present paper we consider a special case of the subgraph isomorphism 
problem for ordered graphs, called marked subgraph isomorphism. In this case 
we know a priori that  the degree of some vertices is preserved under the sub- 
graph isomorphism mapping. This information is explicitly utilized to develop 
a polynomial-time algorithm. The usefulness of the marked subgraph isomor- 
phism algorithm is demonstrated by solving the subcircuit extraction problem. 
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It is shown that this restricted form of subgraph isomorphism is much more 
efficient than general ~ubgraph isomorphism algorithms. 

We begin our discussion with some definitions and notations. In Section 3 
we develop the marked subgraph isomorphism algorithm. Its application to the 
subcircuit extraction problem is described in Section 4. Finally, some discussions 
conclude the paper. 

2 D e f i n i t i o n s  a n d  n o t a t i o n s  

In the present paper we consider undirected ordered graphs and their attributed 
version. 

Defini t ion 1. An ordered graph is a triple (V, E, L) where (I7, E) defines an 
undirected graph. For each vertex v E V, the edges vvi, vv2 , . . . ,  vvk incident to 
v have a unique order which is represented by a cyclic list C(v). L is the set of 
the lists L(v) for each v E V. The number k is called the degree of v, denoted 
by d(v). 

Defini t ion 2. Gi = (V1,Ei) is a subgraph of G2 = (V2,E2) if there exists an 
injective mapping f : V1 ~ I/2 such that vlv2 E Ei  ~ f ( v i ) f ( v 2 )  E E2 holds. 
That is, VlV2 is an edge of Gi iff f ( v l ) f ( v 2 )  is an edge of G2. The mapping f is 
called subgraph isomorphism. 

Subgraph isomorphism in general is a well-known NP-complete problem [2]. 
In the present paper we restrict our efforts to the special case of marked subgraph 
isomorphism. In the general subgraph isomorphism problem, we have d(v) <_ 
d( f (v ) ) ,  v E V1. In some applications we know a priori a subset V{ c_ 1/i for 
which the vertex degree is preserved under the subgraph isomorphism mapping. 
That is, for each v E V{, d(v) = d( f (v ) )  must be fulfilled by the mapping. 

Defini t ion 3. Given a partition V1 = V~ U V +, V{ N V + = O, a marked subgraph 
isomorphism f is a constrained form of subgraph isomorphism such that for each 
v E VI*, d(v) = d( f (v ) )  holds. We call the vertices of Vi* and V + internal and 
external vertices, respectively. 

In dealing with ordered graphs we also require the preservation of order 
information under the subgraph isomorphism mapping f .  

Defini t ion 4. Given two ordered graphs Gt = (Vi, El ,  LI)  and G2 = (V2, E2, L2), 
a marked subgraph isomorphism f from Gi to G2 implies that, if for any in- 
ternal vertex v E Vi*, we have Li(v)  = (VVl,VV2, . . . ,vvk) ,  then L2( f (v ) )  = 
( f ( v ) f ( v l ) ,  f ( v ) f ( v 2 ) , . . . ,  f ( v ) f ( v k ) )  holds. 

Figure 1 shows three ordered graphs where the edges incident to a vertex are 
assumed to be ordered clockwise. Clearly, there exists a subgraph isomorphism 

f13 ~-" {('Vlk,V3k) [ k ~- 1 , 2 , ' ' ' , 8 }  
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V18 l) 17 V28 V27 V38 V37 

Ut5 V16 U25 V26 7335 V36 

G1 G2 G3 

Fig. 1. Three ordered graphs. 

from G1 to G3. Under the constraint partition VI* = {vn, vt2, via, vl4}, however, 
f13 is not a marked subgraph isomorphism because both vii and v12 have a 
degree different from their respective mapping in G3. On the other hand, the 
mapping 

f23 = {(v2k,v3k) I k = 1 , 2 , . . . , 8 }  

represents a marked subgraph isomorphism under the constraint partition 172" = 
{V21,V22,V23,V24 } from G2 to G3. 

Notice that in Definition 4 we don't ask for the order preservation of external 
vertices. If this is needed as well, the definition of marked subgraph isomorphism 
of ordered graphs should be extended as follows. For any external vertex v E V +,  
if we have Ll(v) = (vvl, vv2 , . . . ,  vvk), then ( f (v ) f (v l ) ,  f ( v ) f (v2) , .  ., f ( v ) f ( vk ) )  
must be a sublist of L2(f(v)).  

Definit ion 5. An attributed ordered graph G is a 5-tuple, G = (V, E, L, #, v) 
where (17, E, L) defines an ordered graph. The function # : V ~ Av assigns 
attributes to the vertices. The function v : E --+ AE assigns attributes to the 
edges; the edges vivj and vjvi have identical attributes. The sets A v  and AE of 
attributes may be numerical values, symbolic labels, or vectors of any type. 

The (marked) subgraph isomorphism of attributed ordered graphs may be 
defined in different ways. We may only require that the basic structures of two 
ordered graphs without attributes are isomorphic. Alternatively, we may addi- 
tionally ask for the preservation of attributes, i.e., #l(v) = p.2(f(v)) for any 
vertex v E ½, and ul(vivj) = u2(f(vi) f (vj))  for any edge v~vj E El.  

3 M a r k e d  s u b g r a p h  i s o m o r p h i s m  a l g o r i t h m  

The definition of marked subgraph isomorphism lends itself to the following 
straightforward algorithm. By using an arbitrary subgraph isomorphism algo- 
rithm we find out the subgraph isomorphism mappings between two graphs. 
These mappings are then checked for the fulfillment of order and degree con- 
straints. This approach, however, needs exponential computation time in the 
worst case. In the following we utilize the order and degree information to derive 
a polynomial-time algorithm. 
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0 U0 = {v~l} (vl~,v~) ¢ 
1 U1 : Uo U {'u15,'g14} (v14,Vll) $I ~--~- v157J14 
2 u2 = u~ U{v~,v~3} (v~3,v~4) $2 = S~v~v~vi3 
3 u3 = u2 u {vaT, v~2} (v~2, ~3)  xa = S ~ v ~ 4 v ~  
4 U4 -~. U3 U {v16} ~ $4 ~- 53v13v16 

C(v,~v~)  
0 

C1 = 23 
C2 = Cl145 
C3=C2367 
C4= C358 

Table 1. Generation of the code C(vllvts). 

3.1 G r a p h  cod ing  

To determine whether Gt is a subgraph of G2 under the constraint partition 
G~, we compute a code of G1 for some fixed start edge vivj C E1 as follows. 
We assume that  the start vertex vi be an internal vertex, i.e., v /E  VI*. At first, 
all vertices of Gt except vi are set to unused. In addition, we need a queue Q 
initialized to (vi, vj) and a string S(vivj) being initially empty. We always fetch 

V* * the first record ( i ,  v~) from Q. Starting from vj, we then visit all vertices Vk 
incident to v* according to the order Li(v~) and append them in this order to 
S(vivj). Each time an unused internal vertex vk E VI* is encountered, we put a 
record (vk, v*) to the queue Q and set vk to used. This process is repeated until 
the queue Q becomes empty. Now we add a numbering scheme to the string 
S(vivj) so that  a code is obtained. Each vertex is labeled by a natural number, 
beginning with 1 in the order the vertices are set to used. Thus, the label for 
vi is 1, the label for vj is 2, the other d(vi) - 1 neighbors of vi are labeled by 
3, 4 , - . - ,  d(vi) + 1, respectively. Essentially, this is a relabeling of the vertices of 
G1. The numbering of the string S(V~Vy) results in a string of natural numbers 
which we call the code for vivj, denoted by C(viv 3). 

To illustrate the coding procedure, we consider the ordered graph G1 shown 
in Figure t under the constraint partition ~* = {v11, v12, v13, v14}. Using VllVls 
as the starting edge, Table 1 lists the used vertices, the contents of the queue Q, 
and the string S at each step. Therefore, we have: 

S(VllVl5 ) ~ ?315Y14VllVlSV13V14V17V12V13V16. 

Accordingly, the code C(vllv15) is: 

C(VllV15) -~- 2314536758.  

Let V~" = {vii = vi,vi2,. . .  ,vik} and the labels of vi t ,v i2," ' ,Vik in C(vivj) 
be of ascending order. The string S(v~vj) has the following structure. The first 
d(vil) vertices of S(vivj) are the vertices incident to vii in an order defined 
by Ll(Vil). Th next d(vi2) vertices are the vertices incident to vi2, and so on. 
Finally, S(vivj) ends with the d(vik) vertices incident to vik. Therefore, the 



~2G 

length of S(vivj) and C(v~v3) is given by: 

IS(v vj)l = IC(v v )l = 
vkCV~ 

Notice that dependent on the constraint partition of G~, the coding procedure 
described above may not reach all vertices of G1. Reachable are vertices vk for 
which there exists at least one chain of connected edges from vi to vk such 
that the vertices from vi to the vertex before vk on the chain are all internal 
vertices. In the present paper we only allow those partitions of G~ that enable 
the reachability of all vertices of Gt. 

3.2 Algor i thm 

Given the code C(vivj) of G1, our algorithm considers all directed edges v~v~- 
of G~. For each v'~v'j, we generate a code C(v'iv'~) and this code is then used for 
subgraph isomorphism testing. The generation of C(v~v}) in G2 is similar to that 
of C(vivj) in G~. At first, all vertices of G2 except v~ are set to unused and v~ is 
labeled by 1. The queue Q is initialized to (v~, v}) and the string S(v~v~)is set 
to empty. We always fetch the first record (v$, v~) from Q. Starting from v~, we 
then visit all vertices vk incident to v~" according to the order L2 (v~) and append 
them in this order to S(v~vj). In addition we append the corresponding labels to 

? ! C(vivj). If unused vertices are involved here, then new labels are generated and 
they are set to used afterwards. Each time an unused vertex vk is encountered, 
we also look at the vertex in G1 that has the same label as vk. If that vertex is 
an internal vertex, then we put a record (vk, ~ )  to the queue Q. This process 
is repeated until either C(v~v}) becomes of the same length as C(vivj) or the 
queue Q becomes empty. 

The following two theorems are fundamental to our subgraph isomorphism 
algorithm. 

Theorem 6. If there exists a marked subgraph isomorphism f from G1 to G2 
such that f maps vi and vj to v~ and v}, respectively, then we have C(vivj) = 

P r o o f  For notational simplicity we relabel the vertices v~ of G2 such that f(v~) = 
v~ is satisfied. We consider an ordered subgraph G2 = (V2,/~2, L2): 

The order relationship/~2(v~) for each v~ E V2 is inherited from the corresponding 
vertex v~ of G1. The graph G2 actually represents a mirrored version of G1 in 
G2. By introducing the constraint partition: 
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on G2, the coding procedure described in Section 3.1 yields the code ~ ~ ' C(v~vj) on 
^ / l 

G2 for the start edge v~v}. Clearly, C(vivy ) = C(vivj) holds. On the other hand, 

the generation of C(viv~^ ' ~ ) on G2 is exactly mimed by the coding procedure for 
C(vlv}) on G2. Therefore, the relationship C(vivj) = C(v~v}) is proved. [=1 

T h e o r e m  7. If C(vivj) = C(v~v~.) holds, then under the two conditions 

, ' (v~ and vk 1. For each internal vertex vk E VI* the corresponding vertex v k 
have the same label) has the same degree as vk; 

2. For each edge vkvz E El,  vk E l,~ +, vl E V1 +, there is an edge ' ' vk v t ~ E2, 
! ! 

where vk(vl) has the same label as Vk(Vl); 

there exists an ordered subgraph isomorphism f from G1 to G2 such that f maps 
vi and vj to v~ and v~., respectively. 

P r o o f  We relabel the vertices of G1 by their corresponding number in C(v~vj). 
Similarly, a vertex of G2 covered in S(v[v}) is relabeled by k' if that vertex has 
a number k in Ckv~v)); vertices of G2 not covered in S(v~v~j) are irrelevant in 
this context and are labeled so that no confusion arises. After the relabeling the 
initial items S(viv,),  C(vivj), S(v~v}) and C(v~v}) become S(12), C(12), S(1'2'), 
and C(1'2'), respectively. In addition S(12) = C(12) and S(1'2') -- C(1'2') hold. 
In the following we prove that the mapping f(b) = b ~ is a marked subgraph 
isomorphism from G1 to G2. 

Assume VI* = {nl = 1 ,n2 , . . . , ak } ,  i.e., there are k internal vertices 1 = 
nl < n2 < ""  < nk in G1. Then, the first d(nl) numbers of C(v12) must be 
the vertices incident to vertex nt, and their order in C(12) corresponds to the 
ordered list Ll(nl )  in G1. Similarly, the next d(n2) numbers in C(12) describe 
the local ordered structure of vertex n2, and so on. On the other hand, the 
coding procedure for C(1'2') guarantees that the first d(n~) numbers of C(1'2') 

' and the next d(n'2) the local represent the local ordered structure of vertex nl, 
ordered structure of n~, etc. From the facts C(12) = C(1'2') and d(n~) = d(n~), 
ni E V~, (condition 1) it follows that under the mapping f(b) = b', each edge 
niv E El,  n~ E V~, in G1 has a corresponding edge n~v I in G2, and the order 
relationships for all internal vertices of G1 are retained. It remains to show that 
all edges vkvl E El,  vk E V +, vl E 1/'1 +, consisting of only external vertices 
in G1 have corresponding edges in G2 as well. This is given by condition 2. In 
summary, the mapping f(b) = b ~ defines a marked subgraph isomorphism from 
G1 to G2. [3 

Note that the two conditions in Theorem 7 don't put any further constraints 
on the graphs that can be handled by the proposed algorithm. Instead, they 
are complementary conditions on the mapping f besides the code equivalence 
so that f represents a true subgraph isomorphism. Condition 2, for instance, is 
necessary because information about edges connecting two external vertices is 
not included in the code. 

Based on the two theorems above we propose the following algorithm for 
finding all marked subgraph isomorphisms from G1 and G2: 
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Istep[lused ]Q IS(valv35) ]C(v31v3~)] 

1 U0 U {v35, v34, 'v32} (v34, vaO,iv32, v31) ~1 = - 234 

Table 2. Generation of the code C(v31 v35). 

1. Choose arbitrarily a directed edge vivj E Et, vi E VI*, of GI and compute 
S(vivj) and C(vivj). 

2. For each directed edge v~v~ of G2 do steps 2.1 and 2.2. 
2.1. Compute S(v~v~) and C(v~v~). If C(vd~j) ¢ C(v;v~), go to step 2 for the 

next edge of G2. 
2.2. Test the two conditions in Theorem 7. tf both are fulfilled, then there exists 

a marked subgraph isomorphism from G1 to G2 that maps each vertex in 
S(v~vj) to the corresponding vertex in S(v~v~). 

For more efficiency this algorithm can be 
vertex number during the generation of 
sponding vertex number in C(vivj), we 
and turn to the next edge of G2. 

To illustrate the algorithm, we verify 

modified in the following way. If some 
C(v~v}) is not identical to the corre- 
stop the coding process immediately 

that the mapping f13 given in Section 
2 is not a marked subgraph isomorphism from G1 to G3 shown in Figure 1. For 
G1 we compute S(vuvl5) and C(vnv15), see Section 3.1. Step 2 of the algorithm 
computes S(v31v35) and C(v31v35), and is tabulated in Table 2. Already after a 
single step a difference between C(vnv15) and C(v31v35) occurs. Therefore, we 
conclude that there is no marked subgraph isomorphism from G1 and G3 that 
maps vllv15 to v31v35 and immediately turn to the next edge of G2. On the 
other hand, it is easy to verify that f23 is a marked subgraph isomorphism from 
G2 to G3. 

So far we have considered unattributed graphs. The extension to attributed 
ordered graphs is straightforward. When we have reached a vertex v during the 
generation of C(v~v~), we ask for the equivalence of the attribute of v with that 
of the corresponding vertex in G1. In addition, we have to make sure that the 
attribute of the edge on which v has just been reached agrees with that of the 
corresponding edge in Gx. Finally, the test of condition 2 in step 2.2 of the 
algorithm must include an attribute equivalence test as well. 

Now we analyze the complexity of the algorithm. It is assumed that ordered 
graphs are represented by a suitable data structure so that the next edge of a 
vertex relative to another edge is retrieved in constant time. For example, this 
can be achieved by storing the edges incident to a vertex in an array. Let GI(G2) 
have nl(n2) vertices and ml(m2) edges. The generation of the code C(vivj) for 
a particular directed edge vivj in G1 requires O(ml) operations. For each of 
the 2m2 directed edges in G2, step 2.1 requires O(ml) time while step 2.2 is 
done in O(nl + mi) time. Therefore, the algorithm has an O((nl + ml)m2) time 
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complexity totally. Since nl - 1 < ml, the time complexity is finally quantified by 
O(mlm2). The space requirement includes O(ml + m2) for the data structure of 
the ordered graphs and O(nl + n2) for the queue Q. Totally, we need therefore 
O(ml + m2) space. 

Finally, it is worth mentioning that if Definition 4 is extended to require the 
order preservation of external vertices, then step 2.2 of the marked subgraph 
isomorphism algorithm should include an order preservation test for all external 
vertices of G1 accordingly. 

4 Application: Subcircuit extraction 

The problem of finding subcircuits in a larger circuit arises in many contexts 
in computer-aided design. Most of the proposed algorithms for this task rely on 
specific characteristics of the circuit technology. Recent efforts to technology- 
independent subcircuit extraction are reported in [10, 11]. The SubGemini sys- 
tem described in [10] is based on a general subgraph isomorphism algorithm. 

We propose to use the marked subgraph isomorphism algorithm developed in 
the last section for the subcircuit extraction problem. Frequently, circuit design 
is done by using library based cells. Then, the library cells can be used as the 
subgraphs to be identified in the main circuit. In this case the order information 
of the library cells is preserved in the main circuit and this justifies the use of 
ordered graphs for modeling circuits. 

We augment the circuit graph representation suggested in [10] by the order 
information. A circuit graph consists of device vertices and net (wire) vertices. 
The device vertices may represent transistors, gates, etc, while the net vertices 
are the terminals or metallic contacts to which the devices are connected. A con- 
nection between two devices in the circuit is modeled by connecting each device 
vertex to a net vertex. There is a natural partition of a subcircuit. All device 
vertices are internal. A net vertex is considered as external if it is connected to at 
least one device outside the subcircuit. For all internal vertices the vertex degree 
remains the same in the main circuit. Now the subcircuit extraction problem 
can be solved by finding all marked subgraph isomorphisms from the subcircuit 
graph to the main circuit graph. 

Several experiments have been done to test our approach of subcircuit extrac- 
tion. Table 3 lists the results for some large circuits. The size of circuits is given 
in terms of the number of transistors. In all experiments, the occurrences of the 
subcircuit have been completely found. The run time for our algorithm (MSI) 
and, for comparison purpose, the SubGemini system is also reported in Table 3, 
both measured on a Sun SparcStation 5. Our approach using a restricted form 
of subgraph isomorphism is clearly much faster than SubGemini which is based 
on an general subgraph isomorphism technique. 
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main circuit 
G 

RAM array 

muxes 

subcircuits sizeG siZes #solutionSfound 

RAM cell 3000 6 500 
6000 6 1000 
12000 6 2000 

echain 1020 2 340 
nchain 1020 2 340 

gnd-echNn 1020 2 0 

time (ms) time (ms) 
MSI SubGemini 

28 1220 
57 2690 
ii0 6640 .... 

17 1670 
17 1790 
li  240 

Table 3. Experimental results of subcircuit extraction. 

5 Conclusion 

For many applications the full power of matching techniques for general graphs 
is not really necessary. Frequently, constrained graphs allow efficient, sometimes 
even low-polynomial time, algorithms. In the present paper we have developed 
an O(mlm2) time algorithm for the marked subgraph isomorphism of ordered 
graphs. It turns out to be useful for solving the subcircuit extraction problem. 
Our approach has been demonstrated to be much more efficient than general 
subgraph isomorphism techniques. 
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