
Marked Subgraph Isomorphism of Ordered
Graphs

Xiaoyi Jiang, Horst Bunke

Department of Computer Science, University of Bern
Neubrfickstrasse 10, CH-3012 Bern, Switzerland

{jiang,bunke} @iam.unibe.eh

Abstract . Recently, the concept of ordered graphs has been introduced
and it was shown that isomorphism of ordered graphs can be solved in
quadratic time. In the present paper we consider a special case of the
subgraph isomorphism problem for ordered graphs, called marked sub-
graph isomorphism. An algorithm of O(ralm2) complexity is developed
for finding all marked subgraph isomorphisms from a graph G1 to an-
other graph G2, where rn~ and m2 are the number of edges in G1 and
G2, respectively. We demonstrate the usefulness of our Mgorithm by ap-
plying it to solving the subcircuit extraction problem. It turns out that
our approach is much more efficient than traditional methods based on
general subgraph isomorphism techniques.

1 I n t r o d u c t i o n

Graphs are a very powerful and universal tool for epresenting various aspects of
the real world. Depending on the requirements of a concrete application, there
are numerous methods for the analysis of graphs, such as finding the shortest
path, detecting Hamiltonian cycles, coloring the edges of graphs, and many more.
A very important problem is the detection of subgraph isomorphism.

Many problems in graph theory are NP-complete, including the subgraph
isomorphism problem. By imposing certain restrictions on the underlying graphs,
however, it is often possible to derive algorithms of polynomial-time complexity.
Examples of such restricted graphs are graphs with bounded valence [9], planar
graphs [3], and rooted ordered trees [1]. Alternatively, we may also search for
approximate solutions [8]. Recently, the authors [6] have investigated the class
of so-called ordered graphs, in which the vertices incident to a vertex have a
unique order. Graph isomorphism of ordered graphs can be solved in quadratic
time [7] and has found applications in the detection of object symmetries [4, 5]
and computer vision [6].

In the present paper we consider a special case of the subgraph isomorphism
problem for ordered graphs, called marked subgraph isomorphism. In this case
we know a priori that the degree of some vertices is preserved under the sub-
graph isomorphism mapping. This information is explicitly utilized to develop
a polynomial-time algorithm. The usefulness of the marked subgraph isomor-
phism algorithm is demonstrated by solving the subcircuit extraction problem.

123

It is shown that this restricted form of subgraph isomorphism is much more
efficient than general ~ubgraph isomorphism algorithms.

We begin our discussion with some definitions and notations. In Section 3
we develop the marked subgraph isomorphism algorithm. Its application to the
subcircuit extraction problem is described in Section 4. Finally, some discussions
conclude the paper.

2 D e f i n i t i o n s a n d n o t a t i o n s

In the present paper we consider undirected ordered graphs and their attributed
version.

Defini t ion 1. An ordered graph is a triple (V, E, L) where (I7, E) defines an
undirected graph. For each vertex v E V, the edges vvi, vv2 , . . . , vvk incident to
v have a unique order which is represented by a cyclic list C(v). L is the set of
the lists L(v) for each v E V. The number k is called the degree of v, denoted
by d(v).

Defini t ion 2. Gi = (V1,Ei) is a subgraph of G2 = (V2,E2) if there exists an
injective mapping f : V1 ~ I/2 such that vlv2 E Ei ~ f (v i) f (v 2) E E2 holds.
That is, VlV2 is an edge of Gi iff f (v l) f (v 2) is an edge of G2. The mapping f is
called subgraph isomorphism.

Subgraph isomorphism in general is a well-known NP-complete problem [2].
In the present paper we restrict our efforts to the special case of marked subgraph
isomorphism. In the general subgraph isomorphism problem, we have d(v) <_
d(f (v)) , v E V1. In some applications we know a priori a subset V{ c_ 1/i for
which the vertex degree is preserved under the subgraph isomorphism mapping.
That is, for each v E V{, d(v) = d(f (v)) must be fulfilled by the mapping.

Defini t ion 3. Given a partition V1 = V~ U V +, V{ N V + = O, a marked subgraph
isomorphism f is a constrained form of subgraph isomorphism such that for each
v E VI*, d(v) = d(f (v)) holds. We call the vertices of Vi* and V + internal and
external vertices, respectively.

In dealing with ordered graphs we also require the preservation of order
information under the subgraph isomorphism mapping f .

Defini t ion 4. Given two ordered graphs Gt = (Vi, El , LI) and G2 = (V2, E2, L2),
a marked subgraph isomorphism f from Gi to G2 implies that, if for any in-
ternal vertex v E Vi*, we have Li(v) = (VVl,VV2, . . . ,vvk) , then L2(f (v)) =
(f (v) f (v l) , f (v) f (v 2) , . . . , f (v) f (v k)) holds.

Figure 1 shows three ordered graphs where the edges incident to a vertex are
assumed to be ordered clockwise. Clearly, there exists a subgraph isomorphism

f13 ~-" {('Vlk,V3k) [k ~- 1 , 2 , ' ' ' , 8 }

124

V18 l) 17 V28 V27 V38 V37

Ut5 V16 U25 V26 7335 V36

G1 G2 G3

Fig. 1. Three ordered graphs.

from G1 to G3. Under the constraint partition VI* = {vn, vt2, via, vl4}, however,
f13 is not a marked subgraph isomorphism because both vii and v12 have a
degree different from their respective mapping in G3. On the other hand, the
mapping

f23 = {(v2k,v3k) I k = 1 , 2 , . . . , 8 }

represents a marked subgraph isomorphism under the constraint partition 172" =
{V21,V22,V23,V24 } from G2 to G3.

Notice that in Definition 4 we don't ask for the order preservation of external
vertices. If this is needed as well, the definition of marked subgraph isomorphism
of ordered graphs should be extended as follows. For any external vertex v E V +,
if we have Ll(v) = (vvl, vv2 , . . . , vvk), then (f (v) f (v l) , f (v) f (v2) , . ., f (v) f (vk))
must be a sublist of L2(f(v)).

Definit ion 5. An attributed ordered graph G is a 5-tuple, G = (V, E, L, #, v)
where (17, E, L) defines an ordered graph. The function # : V ~ Av assigns
attributes to the vertices. The function v : E --+ AE assigns attributes to the
edges; the edges vivj and vjvi have identical attributes. The sets A v and AE of
attributes may be numerical values, symbolic labels, or vectors of any type.

The (marked) subgraph isomorphism of attributed ordered graphs may be
defined in different ways. We may only require that the basic structures of two
ordered graphs without attributes are isomorphic. Alternatively, we may addi-
tionally ask for the preservation of attributes, i.e., #l(v) = p.2(f(v)) for any
vertex v E ½, and ul(vivj) = u2(f(vi) f (vj)) for any edge v~vj E El.

3 M a r k e d s u b g r a p h i s o m o r p h i s m a l g o r i t h m

The definition of marked subgraph isomorphism lends itself to the following
straightforward algorithm. By using an arbitrary subgraph isomorphism algo-
rithm we find out the subgraph isomorphism mappings between two graphs.
These mappings are then checked for the fulfillment of order and degree con-
straints. This approach, however, needs exponential computation time in the
worst case. In the following we utilize the order and degree information to derive
a polynomial-time algorithm.

125

0 U0 = {v~l} (vl~,v~) ¢
1 U1 : Uo U {'u15,'g14} (v14,Vll) $I ~--~- v157J14
2 u2 = u~ U{v~,v~3} (v~3,v~4) $2 = S~v~v~vi3
3 u3 = u2 u {vaT, v~2} (v~2, ~3) xa = S ~ v ~ 4 v ~
4 U4 -~. U3 U {v16} ~ $4 ~- 53v13v16

C(v,~v~)
0

C1 = 23
C2 = Cl145
C3=C2367
C4= C358

Table 1. Generation of the code C(vllvts).

3.1 G r a p h cod ing

To determine whether Gt is a subgraph of G2 under the constraint partition
G~, we compute a code of G1 for some fixed start edge vivj C E1 as follows.
We assume that the start vertex vi be an internal vertex, i.e., v /E VI*. At first,
all vertices of Gt except vi are set to unused. In addition, we need a queue Q
initialized to (vi, vj) and a string S(vivj) being initially empty. We always fetch

V* * the first record (i , v~) from Q. Starting from vj, we then visit all vertices Vk
incident to v* according to the order Li(v~) and append them in this order to
S(vivj). Each time an unused internal vertex vk E VI* is encountered, we put a
record (vk, v*) to the queue Q and set vk to used. This process is repeated until
the queue Q becomes empty. Now we add a numbering scheme to the string
S(vivj) so that a code is obtained. Each vertex is labeled by a natural number,
beginning with 1 in the order the vertices are set to used. Thus, the label for
vi is 1, the label for vj is 2, the other d(vi) - 1 neighbors of vi are labeled by
3, 4 , - . - , d(vi) + 1, respectively. Essentially, this is a relabeling of the vertices of
G1. The numbering of the string S(V~Vy) results in a string of natural numbers
which we call the code for vivj, denoted by C(viv 3).

To illustrate the coding procedure, we consider the ordered graph G1 shown
in Figure t under the constraint partition ~* = {v11, v12, v13, v14}. Using VllVls
as the starting edge, Table 1 lists the used vertices, the contents of the queue Q,
and the string S at each step. Therefore, we have:

S(VllVl5) ~ ?315Y14VllVlSV13V14V17V12V13V16.

Accordingly, the code C(vllv15) is:

C(VllV15) -~- 2314536758.

Let V~" = {vii = vi,vi2,. . . ,vik} and the labels of vi t ,v i2," ' ,Vik in C(vivj)
be of ascending order. The string S(v~vj) has the following structure. The first
d(vil) vertices of S(vivj) are the vertices incident to vii in an order defined
by Ll(Vil). Th next d(vi2) vertices are the vertices incident to vi2, and so on.
Finally, S(vivj) ends with the d(vik) vertices incident to vik. Therefore, the

~2G

length of S(vivj) and C(v~v3) is given by:

IS(v vj)l = IC(v v)l =
vkCV~

Notice that dependent on the constraint partition of G~, the coding procedure
described above may not reach all vertices of G1. Reachable are vertices vk for
which there exists at least one chain of connected edges from vi to vk such
that the vertices from vi to the vertex before vk on the chain are all internal
vertices. In the present paper we only allow those partitions of G~ that enable
the reachability of all vertices of Gt.

3.2 Algor i thm

Given the code C(vivj) of G1, our algorithm considers all directed edges v~v~-
of G~. For each v'~v'j, we generate a code C(v'iv'~) and this code is then used for
subgraph isomorphism testing. The generation of C(v~v}) in G2 is similar to that
of C(vivj) in G~. At first, all vertices of G2 except v~ are set to unused and v~ is
labeled by 1. The queue Q is initialized to (v~, v}) and the string S(v~v~)is set
to empty. We always fetch the first record (v$, v~) from Q. Starting from v~, we
then visit all vertices vk incident to v~" according to the order L2 (v~) and append
them in this order to S(v~vj). In addition we append the corresponding labels to

? ! C(vivj). If unused vertices are involved here, then new labels are generated and
they are set to used afterwards. Each time an unused vertex vk is encountered,
we also look at the vertex in G1 that has the same label as vk. If that vertex is
an internal vertex, then we put a record (vk, ~) to the queue Q. This process
is repeated until either C(v~v}) becomes of the same length as C(vivj) or the
queue Q becomes empty.

The following two theorems are fundamental to our subgraph isomorphism
algorithm.

Theorem 6. If there exists a marked subgraph isomorphism f from G1 to G2
such that f maps vi and vj to v~ and v}, respectively, then we have C(vivj) =

P r o o f For notational simplicity we relabel the vertices v~ of G2 such that f(v~) =
v~ is satisfied. We consider an ordered subgraph G2 = (V2,/~2, L2):

The order relationship/~2(v~) for each v~ E V2 is inherited from the corresponding
vertex v~ of G1. The graph G2 actually represents a mirrored version of G1 in
G2. By introducing the constraint partition:

127

on G2, the coding procedure described in Section 3.1 yields the code ~ ~ ' C(v~vj) on
^ / l

G2 for the start edge v~v}. Clearly, C(vivy) = C(vivj) holds. On the other hand,

the generation of C(viv~^ ' ~) on G2 is exactly mimed by the coding procedure for
C(vlv}) on G2. Therefore, the relationship C(vivj) = C(v~v}) is proved. [=1

T h e o r e m 7. If C(vivj) = C(v~v~.) holds, then under the two conditions

, ' (v~ and vk 1. For each internal vertex vk E VI* the corresponding vertex v k
have the same label) has the same degree as vk;

2. For each edge vkvz E El, vk E l,~ +, vl E V1 +, there is an edge ' ' vk v t ~ E2,
! !

where vk(vl) has the same label as Vk(Vl);

there exists an ordered subgraph isomorphism f from G1 to G2 such that f maps
vi and vj to v~ and v~., respectively.

P r o o f We relabel the vertices of G1 by their corresponding number in C(v~vj).
Similarly, a vertex of G2 covered in S(v[v}) is relabeled by k' if that vertex has
a number k in Ckv~v)); vertices of G2 not covered in S(v~v~j) are irrelevant in
this context and are labeled so that no confusion arises. After the relabeling the
initial items S(viv,), C(vivj), S(v~v}) and C(v~v}) become S(12), C(12), S(1'2'),
and C(1'2'), respectively. In addition S(12) = C(12) and S(1'2') -- C(1'2') hold.
In the following we prove that the mapping f(b) = b ~ is a marked subgraph
isomorphism from G1 to G2.

Assume VI* = {nl = 1 ,n2 , . . . , ak } , i.e., there are k internal vertices 1 =
nl < n2 < "" < nk in G1. Then, the first d(nl) numbers of C(v12) must be
the vertices incident to vertex nt, and their order in C(12) corresponds to the
ordered list Ll(nl) in G1. Similarly, the next d(n2) numbers in C(12) describe
the local ordered structure of vertex n2, and so on. On the other hand, the
coding procedure for C(1'2') guarantees that the first d(n~) numbers of C(1'2')

' and the next d(n'2) the local represent the local ordered structure of vertex nl,
ordered structure of n~, etc. From the facts C(12) = C(1'2') and d(n~) = d(n~),
ni E V~, (condition 1) it follows that under the mapping f(b) = b', each edge
niv E El, n~ E V~, in G1 has a corresponding edge n~v I in G2, and the order
relationships for all internal vertices of G1 are retained. It remains to show that
all edges vkvl E El, vk E V +, vl E 1/'1 +, consisting of only external vertices
in G1 have corresponding edges in G2 as well. This is given by condition 2. In
summary, the mapping f(b) = b ~ defines a marked subgraph isomorphism from
G1 to G2. [3

Note that the two conditions in Theorem 7 don't put any further constraints
on the graphs that can be handled by the proposed algorithm. Instead, they
are complementary conditions on the mapping f besides the code equivalence
so that f represents a true subgraph isomorphism. Condition 2, for instance, is
necessary because information about edges connecting two external vertices is
not included in the code.

Based on the two theorems above we propose the following algorithm for
finding all marked subgraph isomorphisms from G1 and G2:

128

Istep[lused]Q IS(valv35)]C(v31v3~)]

1 U0 U {v35, v34, 'v32} (v34, vaO,iv32, v31) ~1 = - 234

Table 2. Generation of the code C(v31 v35).

1. Choose arbitrarily a directed edge vivj E Et, vi E VI*, of GI and compute
S(vivj) and C(vivj).

2. For each directed edge v~v~ of G2 do steps 2.1 and 2.2.
2.1. Compute S(v~v~) and C(v~v~). If C(vd~j) ¢ C(v;v~), go to step 2 for the

next edge of G2.
2.2. Test the two conditions in Theorem 7. tf both are fulfilled, then there exists

a marked subgraph isomorphism from G1 to G2 that maps each vertex in
S(v~vj) to the corresponding vertex in S(v~v~).

For more efficiency this algorithm can be
vertex number during the generation of
sponding vertex number in C(vivj), we
and turn to the next edge of G2.

To illustrate the algorithm, we verify

modified in the following way. If some
C(v~v}) is not identical to the corre-
stop the coding process immediately

that the mapping f13 given in Section
2 is not a marked subgraph isomorphism from G1 to G3 shown in Figure 1. For
G1 we compute S(vuvl5) and C(vnv15), see Section 3.1. Step 2 of the algorithm
computes S(v31v35) and C(v31v35), and is tabulated in Table 2. Already after a
single step a difference between C(vnv15) and C(v31v35) occurs. Therefore, we
conclude that there is no marked subgraph isomorphism from G1 and G3 that
maps vllv15 to v31v35 and immediately turn to the next edge of G2. On the
other hand, it is easy to verify that f23 is a marked subgraph isomorphism from
G2 to G3.

So far we have considered unattributed graphs. The extension to attributed
ordered graphs is straightforward. When we have reached a vertex v during the
generation of C(v~v~), we ask for the equivalence of the attribute of v with that
of the corresponding vertex in G1. In addition, we have to make sure that the
attribute of the edge on which v has just been reached agrees with that of the
corresponding edge in Gx. Finally, the test of condition 2 in step 2.2 of the
algorithm must include an attribute equivalence test as well.

Now we analyze the complexity of the algorithm. It is assumed that ordered
graphs are represented by a suitable data structure so that the next edge of a
vertex relative to another edge is retrieved in constant time. For example, this
can be achieved by storing the edges incident to a vertex in an array. Let GI(G2)
have nl(n2) vertices and ml(m2) edges. The generation of the code C(vivj) for
a particular directed edge vivj in G1 requires O(ml) operations. For each of
the 2m2 directed edges in G2, step 2.1 requires O(ml) time while step 2.2 is
done in O(nl + mi) time. Therefore, the algorithm has an O((nl + ml)m2) time

129

complexity totally. Since nl - 1 < ml, the time complexity is finally quantified by
O(mlm2). The space requirement includes O(ml + m2) for the data structure of
the ordered graphs and O(nl + n2) for the queue Q. Totally, we need therefore
O(ml + m2) space.

Finally, it is worth mentioning that if Definition 4 is extended to require the
order preservation of external vertices, then step 2.2 of the marked subgraph
isomorphism algorithm should include an order preservation test for all external
vertices of G1 accordingly.

4 Application: Subcircuit extraction

The problem of finding subcircuits in a larger circuit arises in many contexts
in computer-aided design. Most of the proposed algorithms for this task rely on
specific characteristics of the circuit technology. Recent efforts to technology-
independent subcircuit extraction are reported in [10, 11]. The SubGemini sys-
tem described in [10] is based on a general subgraph isomorphism algorithm.

We propose to use the marked subgraph isomorphism algorithm developed in
the last section for the subcircuit extraction problem. Frequently, circuit design
is done by using library based cells. Then, the library cells can be used as the
subgraphs to be identified in the main circuit. In this case the order information
of the library cells is preserved in the main circuit and this justifies the use of
ordered graphs for modeling circuits.

We augment the circuit graph representation suggested in [10] by the order
information. A circuit graph consists of device vertices and net (wire) vertices.
The device vertices may represent transistors, gates, etc, while the net vertices
are the terminals or metallic contacts to which the devices are connected. A con-
nection between two devices in the circuit is modeled by connecting each device
vertex to a net vertex. There is a natural partition of a subcircuit. All device
vertices are internal. A net vertex is considered as external if it is connected to at
least one device outside the subcircuit. For all internal vertices the vertex degree
remains the same in the main circuit. Now the subcircuit extraction problem
can be solved by finding all marked subgraph isomorphisms from the subcircuit
graph to the main circuit graph.

Several experiments have been done to test our approach of subcircuit extrac-
tion. Table 3 lists the results for some large circuits. The size of circuits is given
in terms of the number of transistors. In all experiments, the occurrences of the
subcircuit have been completely found. The run time for our algorithm (MSI)
and, for comparison purpose, the SubGemini system is also reported in Table 3,
both measured on a Sun SparcStation 5. Our approach using a restricted form
of subgraph isomorphism is clearly much faster than SubGemini which is based
on an general subgraph isomorphism technique.

130

main circuit
G

RAM array

muxes

subcircuits sizeG siZes #solutionSfound

RAM cell 3000 6 500
6000 6 1000
12000 6 2000

echain 1020 2 340
nchain 1020 2 340

gnd-echNn 1020 2 0

time (ms) time (ms)
MSI SubGemini

28 1220
57 2690
ii0 6640

17 1670
17 1790
li 240

Table 3. Experimental results of subcircuit extraction.

5 Conclusion

For many applications the full power of matching techniques for general graphs
is not really necessary. Frequently, constrained graphs allow efficient, sometimes
even low-polynomial time, algorithms. In the present paper we have developed
an O(mlm2) time algorithm for the marked subgraph isomorphism of ordered
graphs. It turns out to be useful for solving the subcircuit extraction problem.
Our approach has been demonstrated to be much more efficient than general
subgraph isomorphism techniques.

Acknowledgments

We want to thank N. Vijaykrishnan of Univ. of South Florida, Tampa, for valu-
able discussions on the subcircuit extraction problem, and C. Ebeling of Univ.
of Washington for providing us the SubGemini program and the test data.

References

1. P. Dublish, Some comments on the subtree isomorphism problem for ordered trees,
Information Processing Letters, 36: 273-275, 1990.

2. M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness, Freeman and Co., 1979.

3. J.E. Hopcroft and J.K. Wong, Linear time algorithm for isomorphism of planar
graphs, Proe. of 6th Annual ACM Symposium on Theory of Computing, 172-184,
1974.

4. X. Jiang and H. Bunke, A simple and efficient algorithm for determining the sym-
metries of polyhedra, Graphical Models and Image Processing, 54(1):91-95, 1992.

5. X. Jiang, K. Yu, and H. Bunke, Detection of rotational and invotutationat symme-
tries and congruity of polyhedra, The Visual Computer, 12(4): 193-201, 1996.

6. X. Jiang and H. Bunke, Including geometry in graph representations: A quadratic-
time graph isomorphism algorithm and its applications, In Advances in Structural
and Syntactical Pattern Recognition (P. Perner, P. Wang, A. Rosenfeld, Eds.), Lec-
tures Notes in Computer Science 1121, Springer-Verlag, 110-119, 1996.

131

7. X. Jiang and H. Bunke, On the coding of ordered graphs, Computing, 1998. (to
appear)

8. S. Kasif, L. Kitchen, and A. Rosenfeld, A Hough transform technique for subgraph
isomorphism, Pattern Recognition Letters, 2: 83-88, 1983.

9. E.M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time, Journal of Computer and System Science, 25: 42-65, 1982.

10. M. Ohlrich et al., SubGemini: Identifying subcircuits using a fast subgraph iso-
morphism algorithm, Proc. of 30th ACM/IEEE Design Automation Conference,
31-37, 1993.

11. N. Vijaykrishnan and N. Ranganathan, SUBGEN: A genetic approach for subcir-
cuit extraction, Proc. of Int. Conf. on VLSI Design, Bangalore, 1996.

