Abstract
This paper describes the use of discrete graphical editing operations to dynamically fit hierarchical structural models to input data. We use the tree adjoining grammar developed by Joshi [l] as a prototypical structural model, and realise the editing process using a genetic algorithm. The novelty of our approach lies firstly in the use of the edit distance between the ordered frontier nodes of a tree and a set of dictionaries of legal labels derived from the input as a cost function. Secondly, we apply genetic algorithms to tree adjoining grammars with the introduction of a new editing operation. We demonstrate the utility of the method on a simple natural language processing problem.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
A. K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In L. Karttunen D. R. Dowty and A. M. Zwicky, editors, Natural, Language Parsing. Cambridge University Press, 1985.
A. Sanfeliu and K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE SMC, 13:353–362, 1983.
M. A. Eshera and K. S. Fu. A graph distance measure for image analysis. IEEE SMC, 14:398–407, 1984.
D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing, 18:1245–1262, 1989.
K. Zhang. A constrained edit distance between unordered labeled trees. Algorithmica, 15:205–222, 1996.
D. B. Skillicorn. A parallel tree difference algorithm. Information Processing Letters, 60:231–235, 1996.
Richard C. Wilson Andrew. D. J. Cross and Edwin R. Hancock. Inexact graph matching using genetic search. Pattern Recognition, 30:953–970, 1997.
R. C. Wilson and E. R. Hancock. Hierarchical discrete relaxation. Lecture Notes in Computer Science, 1121:120–129, 1996.
S. Geman E. Bienenstock and D. Potter. Compositionality, MDL priors, and object recognition. In NIPS 96, pages 838–844, 1996.
R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM, 21:168–173, 1974.
T. Becker et al. A lexicalised tree adjoining grammar for english. Technical report, University of Pennsylvania, 1995. IRCS Report 95-03.
J. Allen. Natural Language Understanding. Benjamin/Cummings, 1994.
J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.
G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5:96–101, 1994.
D. B. Fogel. An introduction to simulated evolutionary optimisation. IEEE Transactions on Neural Networks, 5:3–14, 1994.
M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE Computer, 27:17–26, 1994.
D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 6, pages 295–323. Edinburgh University Press, 1971.
R. Myers and E. R. Hancock. Genetic algorithm parameters for line labelling. Pattern Recognition Letters, 18:1363–1371, 1997.
R. M. Haralick and L. G. Shapiro. The consistent labelling problem: Parts 1 and 2. IEEE PAMI, 1 (I) and 2 (11):173–184 (I) and 193-203 (II), 1979 (I) and 1981 (II).
20.R. Myers and E. R. Hancock. Genetic algorithms for ambiguous labelling problems. Lecture Notes in Computer Science (EMMCVPR 97), 1223:345–360, 1997.
J. R. Koza. Genetic Programming. MIT Press, 1992.
J. J. Grefenstette. Optimisation of control parameters for genetic algorithms. IEEE SMC, 16:122–128, 1986.
L. J. Eshelman J. D. Schaffer, R. A. Caruna and R. Das. A study of control parameters affecting online performance of genetic algorithms for function optimisation. In Proceedings of the Third International Conference on Genetic Algorithms, pages 51–60, 1989.
K. A. DeJong and W. M. Spears. An analysis of the interacting rôles of population size and crossover in genetic algorithms. In Proceedings of the First Workshop on Parallel Problem Solving from Nature. Springer-Verlag, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Myers, R., Hancock, E.R. (1998). Genetic algorithms for structural editing. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds) Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in Computer Science, vol 1451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033234
Download citation
DOI: https://doi.org/10.1007/BFb0033234
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64858-1
Online ISBN: 978-3-540-68526-5
eBook Packages: Springer Book Archive