
The Noisy Subsequence Tree Recognition Problem

B. J. Oommen 1 and R. K. S. Loke

School of Computer Science, Carleton University, Ottawa, Canada : K1S 5B6.
e-mail address : oommen@scs.carleton.ca

ABSTRACT
In this paper we consider the problem of recognizing ordered labeled trees by

processing their noisy subsequence-trees which are "patched-up" noisy portions of their

fragments. We assume that we are given H, a finite dictionary of ordered labeled trees. X* is
an unknown element of H, and U is any arbitrary subsequence-tree of X*. We consider the

problem of estimating X* by processing Y - a noisy version of U. We do this by sequentially
comparing Y with every element X of H, the basis of comparison being the constrained edit
distance between two trees [OL94], where the constraint implicitly captures the properties of
the corrupting mechanism ("channel") which noisily garbles U into Y. Experimental results
which involve manually constructed trees of sizes between 25 and 35 nodes and which contain
an average of 21.8 errors per tree demonstrate that the scheme has about 92.8% accuracy.
Similar experiments for randomly generated trees yielded an accuracy of 86.4%. To our
knowledge this is the first reported solution to the problem.

I. INTRODUCTION
In this paper, we consider the following problem : Suppose we have a finite

dictionary of labeled ordered trees, H. Let X* be any tree from H. U is an arbitrary
Subsequence-Tree (SuT) of X* obtained by randomly deleting nodes from it. The

resultant tree (called a subsequence-tree or SuT of X*) is further subjected to
substitution, insertion and deletion errors yielding the Noisy Subsequence-Tree
(NSuT), Y. Our aim is then to identify the original tree, X , by processing Y.

Unlike the string-editing 2 problem, only few results have been published
concerning the tree-editing problem. In 1977 Selkow [Se77, SK83] presented a tree
editing algorithm in which insertions and deletions were only restricted to the leaves.
Tai [Ta79] in 1979 presented another algorithm in which insertions and deletions
could take place at any node within the tree except the root. The algorithm of Lu
[Lu79] did not solve this problem for trees of more than two levels. The best known
algorithm for solving the general tree-editing problem is the one due to Zhang and
Shasha [ZS89]. Also, to the best of our knowledge, in all the papers published till the
mid-90's, the literature primarily contains only one numeric inter-tree dissimilarity
measure - their pairwise "distance" measured by the minimum cost edit sequence.

1 Senior Member IEEE.
2The literature on string editing is extensive. We refer the readers to the book written by
Sankoff and Kruskal [SK83] and the proceedings of the recent symposia on Combinatorial
Pattern Matching (CPM) for the state of the art techniques in sequence processing.

-TG

The literature on the comparison of trees is otherwise scanty : Zhang et aL [SZ90]
have suggested how tree comparison can be done for ordered and unordered labeled
trees using tree alignment as opposed to the edit distance utilized elsewhere [ZS89].
The question of comparing trees with variable length don't care operations was
solved by Zhang et. al. [ZSW92]. Besides these, the results concerning unordered
trees are primarily complexity results [ZSS92] - editing unordered trees with bounded
degrees is shown to be NP-hard in [ZSS92] and even MAX SNP-hard in [ZJ94]. The
most recent results concerning tree comparisons is probably the one due to Oommen
et. al. [OZL96] where the authors defined and formulated an abstract measure of
comparison, ~(T1, T2), between two trees.

The problem of comparing a tree with one of its possible subtrees or SuTs has
almost not been studied in the literature at all. The only reported results for
comparing trees in this setting have involved constrained tree distances [OL94] and
indeed, this we will be foundational basis for the PR of noisy SuTs.

The primary contribution of the paper is the application of the constrained tree
distance for the NSuT recognition problem. This is achieved by considering the
information about the noise characteristics of the channel which garbles a tree.
Indeed, these characteristics are translated into edit constraints whence a constrained
tree editing algorithm can be invoked to perform the classification. Besides these, our
paper suggests a new perspective for generalized computation models. Unfortunately,
we cannot extend the results concerning subsequence correction to this present
problem because, as opposed to strings [Oo87], the topological structure of the
underlying graph prohib i t s the two-dimensional generalizations of the corresponding
computations. Thus, inter-tree computations require the simultaneous maintenance of
meta- tree considerations represented as the parent and sibling properties of the
respective trees, which are completely ignored in the case of linear structures (e.g.,
strings). The proofs of the results claimed are omitted here but included in [OL94].

II. NOTATIONS AND DEFINITIONS
IL l Notation

Let N be an alphabet and N* be the set of trees whose nodes are elements of N.

Let Ix be the null tree, which is distinct from ~,, the null label not in N. I~ = N u {~,}.

A tree T ~ N* with M nodes is said to be of size ITI=M, and is represented as the
postorder numbering of its nodes. See [ZS89] for the advantages of this ordering.

Let T[i] be the i th node in the tree according to the left-to-right postorder
numbering, and let 80) represent the postorder number of the leftmost leaf
descendant of the subtree rooted at T[i]. Thus, when T[i] is a leaf, 80) = i. T[i..j]
represents the postorder forest induced by nodes T[i] to T[j] inclusive, of tree T.
T[8(i)..i] will be referred to as Tree(i). Size(i) is the number of nodes in Tree(i). The

father of i is denoted as f(i). If f0(i) = i, the node fk(i) can be recursively defined as

fk(i) = f(fk'l (i)). The set of ancestors of i is : Anc(i) = {fk(i) 1 0 -< k < Depth(i)}.

II.2 Elementary Edit Operations and Sub-Trees
An edit operation on a tree is either an insertion, a deletion or a substitution of

one node by another. In terms of notation, an edit operation is represented

171

symbolically as : x ~ y where x and y can either be a node label or ~,, the null label.
x = ~, and y :~ ~, represents an insertion; x ~ ~ and y = % represents a deletion; and x
~, and y ~: Z, represents a substitution. Note that the case of x = ~, and y = ~, has not
been defined -- it is not needed. The formal definitions of these follow.

Insertion of node x into tree T : Node x will be inserted as a son of some node
u of T. I f u has sons Ul,U2,..,u k, then for some 0 < i < j < k, node u in the resulting

tree will have sons u 1 ui, x, uj Uk, and node x will have no sons i f j = i+l , or else

have sons Ui+l Uj_l.
Deletion of node y from a tree T : I f node y has sons y I,Y2 Yk and node u,

the father of y, has sons Ul,U2 uj with ui=y, then node u in the resulting tree

obtained by the deletion will have sons Ul,U 2 Ui.l,Yl,y 2 yk,Ui+l uj.

Substitution of node x by node y in T : Node y in the resulting tree will have
the same father and sons as node x in the original tree.

Let d(x,y) > 0 be the cost of transforming node x to node y. I f x ~ ~, ~ y,
d(x,y) will represent the cost of substitution of node x by node y. Similarly, x ~ L, y
= ~ and x = L, y ~ ~, will represent the cost of deletion and insertion of node x and y
respectively. We assume that it is reflexive (although this is not mandatory), and that
it obeys a "triangular" inequality constraint. Let S be a sequence Sl s k of edit

operations. An S-derivation from A to B is a sequence of trees A 0 A k such that

A = A 0, B = A k, and Ai-1 "~ Ai via si for 1 < i < k. We extend the inter-node edit

distance d(.,.) to the sequence S as :

ISI
W(S) = ~ d(si) •

i=l
With the introduction of W(S), the distance between T1 and T 2 is :

D(T1,T2) = Min {W(S) I S is an S-derivation transforming T1 to T2}.

II.3 Mappings between Trees
A Mapping is a description of how a sequence of edit operations transforms T 1

into T 2. A mapping is a triple (M,T1,T2), where M is any set of pairs of integers (i,j)

satisfying :
(i) 1 _< i _< ITll, 1 _<j < IT21 ;

(ii) For any pair of (i l ,J l) and (i2,J2) in M,

(a) i 1 = i 2 if and only i f j l =J2 (one-to-one).

(b) T l [i l] is to the left of Tl[i2] if and only if T2[Jl] is to the left o f T2[J2]

(c) T1[i 1] is an ancestor of T1[i2] if and only if T2[Jl] is an ancestor of

TE[J2].
Whenever there is no ambiguity we will use M to represent the triple (M,T1,T2), the

mapping f rom T1 to T 2. Let I, J be sets of nodes in T1 and T2, respectively. Then

we can define the cost o f M as fo l lows :

cost (M) = ~ d(T1[i], T2[j]) + ~_~ d(Tl[i],~,) + ~_~ d(L,T2[j]) .

(i,j)~ M i~ I jEJ

t72

Since mappings can be composed to yield new mappings [Ta79, ZS89], the
relationship between a mapping and a sequence of edit operations can now be
specified.

Lemma I.
Given S, an S-derivation Sl Sk of edit operations from TI to T 2, there

exists a mapping M from T1 to T2 such that cost (M) < W(S). Also, for any mapping
M, there is a sequence of operations such that W(S) = cost(M).

Thus, to search for the minimal cost edit sequence we need to only search for
the optimal mapping.

IlL EDIT CONSTRAINTS
Consider the problem of editing T 1 to T 2, where ITll = N and IT21 = M.

Editing a postorder-forest of T 1 into a postorder-forest of T 2 using exactly i
insertions, e deletions, and s substitutions, corresponds to editing Tl[1..e+s] into
T2[1..i+o]. Bounds on the magnitudes of variables i, e, s, are constrained by the sizes
of trees. If r=e+s, q=i+s, and R=Min{N,M}, these variables will obey the following
constraints:

(a) ma x{ 0 ,M-N}< i<q<M, (b) 0 < e < r < N , and (c) 0 < s < R .
Values of (i,e,s) which satisfy these constraints are termed feasible values.

We define :
(a) Hi = {j I max{0,M-N} <j < M}, (b) H e = {j I 0 < j < N}, and

(c) H s = {j 10 <j _< Min{M,N} }.

H i, H e, and H s are called the set of permissible values of i, e, and s. Theorem I
specifies the feasible triples for editing T 1 [1..r] to T2[1..q].

Theorem I.
To edit T 1 [1..r], the postorder-forest of T 1 of size r, to T2[1..q], the postorder-

forest o fT 2 of size q, the set of feasible triples is {(q-s, r-s, s) I 0 < s < Min{M,N} }.

Theorem II.
Every edit constraint specified for the process of editing T1 to T2 is a unique

subset of H s.

We refer to the distance subject to the constraint x as Dx(T1,T2). By

definition, Dx(T 1,T2) = ~ if x = 9, the null set. We now consider the computation of
Dx(TI,T2).

IV. CONSTRAINED TREE EDITING
Since edit constraints can be written as unique subsets of Hs, we denote the

distance between forest Tl[i'..i] and forest T2[j'..j] subject to the constraint that

173

exactly s substitutions are performed by Const_F_Wt(Tl[i'..i],T2[j'..j],s) or more
precisely by Const F Wt([i'..i],[j'..j],s). The distance between Tl[1..i] and T2[1..j]
subject to this constraint is given by Const_F_Wt(i,j,s) since the starting index of
both trees is unity. The distance between the subtree rooted at i and the subtree rooted
at j subject to the same constraint is given by Const T Wt(i,j,s). The difference
between Const F Wt and Const T Wt is subtle. Indeed, Const_T_Wt(i,j,s) =
Const F_Wt(Tl[8(i)..i],T2[8(j)..j],s). These weights obey the following properties
proved in [OL94].

[,emma II
Let i 1

6)
(ii)

(iii)

(iv)

Anc(i) and j 1 ~ Anc(j). Then

ConsLF_Wt(~t,~t,0) = 0.
Const_F Wt(T 1 [~(i l)..i],~t,0) = Const_F Wt(T 1 [8(i 1)-.i- 1],~t,0) +

d(T1 [i],~,).
Const F Wt(~t, T2[8(j 1)..j],0) = Const._F_Wt(~t,T2[~i(j 1).-J- 1],0) +

d(~,,T2[j]).
Const_F_Wt(T l[5(il)..i],T2[8(j 1)..J],0)

Const_F Wt(T I [8(i 1)..i- 1],T2 [801)..J] ,0) + d(T 1 [i],k)
Min Const_F_Wt(Tl[8(il)..i],T2[8(jl)..j.1],0) + d(~,,T2[j]).

(v) Const_F_Wt(T1 [8(i 1)..i],/.t,s) =

(vi) Const_F_Wt(ll,T2[8(j 1)..j],s) = oo

(vii) Const_F_Wt(~t,~t,s) = ~,

i f s > 0 .

if s>0 .

i fs > 0.

Lemma II essentially states the properties of the constrained distance when
either s is zero or when either of the trees is null. These are thus "basis" cases which
can be used in any recursive computation of the distance. For the non-basis cases we
have to consider the scenarios when the trees are non-empty and when the
constraining parameter, s, is strictly positive. The recursive property of Const F Wt
is given by Theorem HI.

Theorem III.
Let i 1 ~ Anc(i) andj l ~ Anc(j). Then

Const_F_Wt(T1 [5(il)..i],T2[8(j 1)..j],s)

=Min "~

r Const__F_Wt([~i(il)..i-1],[~i(j 1)..j],s) + d(T1 [i],~,)

Const_F Wt([5(i 1)..i],[8(J 1)..J- 1],s) + d(L, Z2[j])

f ConsLF_Wt([~(i 1)-. ~5(i) - 1], [801)--~5(J)- 1] ,s- s2)

Min ~+ Const__F_Wt([~i(i)..i- 1], [80)..j- 1] ,s2-1)
l<_s2~Clin { Size(i);Size(j);s }

/

l + d(Tl[i],T2[j])

174

Theorem III naturally loads to a recursive algorithm, except that its time and
space complexities will be prohibitively large. However, under certain conditions, if
the removal of a sub-forest leaves us with an entire tree, the computation is
simplified. Thus, if 8(i)=~i(il) and Nj)MS(jl) (i.e., i and i 1, j and Jl span the same

subtree), the subforests from Tl[8(il)..8(i)-l] and T2[~(jl)..8(j)-I] do not get

included in the computation. If not, the Const F Wt(T 1 [8(i 1)--i],T2[8(J 1).all,s) can be

considered as a combination of the Const F Wt(Tl[g(il). .6(i)-l], T2[8(jl)..g(j)-l],s-
s2)) and the tree weight between the trees rooted at i and j respectively, which is

ConsLT_Wt(id,s2) as below.

Theorem IV.
Let i 1 ~ Anc(i) and j I E Anc(j). Then the following is true :

If 8(i) = 801) and 8(j) = ~(j I) then
ConsLF_Wt(TI [8(i 1)..i],T2[fXj I)..j],s)

r Const_F_Wt(T I [8(i I)..i- I I,T2[Nj I).-J],s) + d(Ti [i],Z,)

= Min ~ConsLF_Wt(Tl [6(i l)..i],T2tS(j l)..J-I],s) + d(~.,T2lJ])
/

l, Const_F_Wt(T! [~5(i 1)..60)- 1],T2[&(j 1)..~(J)-1],s- I) + d(T1 [i],T2lj])
Otherwise,

Const F__Wt(T 1 [~(i 1)-.i],T2[6(J I)..J],s)
I ConsLF_Wt(T 1 [8(i 1)..i- 1] ,T2 [/5(j 1)-.J],s) + d(T 1 [i],~)

/Const_F_Wt(T 1 [8(i I)..i],T2[8(j I).-J" 1],s) + d(L,T2[j])
=Min

[Min j'Const_.F_Wt(Tl [6(i I)..6(i)-1],T2[~5(j l)..~5(j)-1],s-s2)
l

1,1 <s2<_Min { Size(i);Size(j);s } [+ ConsLT_Wt(i,j,s2)
%

Theorem IV suggests that we can use a dynamic programming flavored
algorithm to solve the constrained tree editing problem. The theorem also asserts that
the distances associated with the nodes which are on the path from i I to 8(il) get
computed as a by-product in the process of computing the Const_F_Wt between the
trees rooted at i 1 and j 1. These distances are obtained as a by-product because
whenever an Const_F Wt is computed, if the forests are trees, it is retained as a
ConsLT_Wt. The set of nodes for which the computation of Const T Wt must be
done independently before the Const_T_Wt associated with their ancestors can be
computed is called EssentialNodes, and these are nodes for which the computation
would involve the second case of Theorem IV as opposed to the first. We define the
set Essential_Nodes of tree T as :

Essential_Nodes(T) = {k I there exists no k' > k such that ~(k) = ~5(k') }.
Intuitively, this set will be the roots of all subtrees of tree T that need separate
computations. Thus, the Const_T_Wt can be computed for the entire tree if
Const T Wt of the Essent ialNodes are computed, and using these stored values, the
rest of the Const T Wts can be computed. Using Theorem IV we can now develop a
bottom-up approach for computing the Const T Wt between all pairs of subtrees.

175

Note that the function 50 and the set Essential_Nodes0 can be computed in linear
time.

We shall now compute Const_T_Wt(i, j, s) and store it in a permanent three-
dimensional array Const_T Wt. In the interest of brevity the algorithms used in this
paper are omitted here, but can be found in [OZL98]. The correctness of Algorithm
T_Weights is proven in detail in [OL94].

As a result of invoking Algorithm T_Weights (which repeatedly invokes
Algorithm Compute_Const_T_Wt for all pertinent values of i and j) we will have
computed the constrained inter-tree edit distance between T 1 and T2 subject to the
constraint that the number of substitutions performed is s, for all feasible
substitutions, s. The space required by the above algorithm is obviously O(ITll • IT21
• Min { IT 1 I, IT21 }). If Span(T) is the Min { Depth(T), Leaves(T) }, the algorithm's time

complexity is O(ITll * IT21 * (Min{ITll, IT21}) 2 * Span(T1) * Span(T2)).

V. T H E NOISY SUBSEQUENCE TREE RECOGNITION PROBLEM
V.1 Principles Used in Solving the Noisy Subsequence-Tree Recognition Problem

Using the foundational concepts of constrained edit distances explained in the
previous sections, we are now in a position to present our solution to the Noisy
Subsequence Tree (NSuT) Recognition Problem. We assume that a "Transmitter"

intends to transmit a tree X* which is an element of a finite dictionary of trees, H.
However, it opts to transmit one of its subsequence trees, U by randomly delete

nodes from X*. The transmission of U is across a noisy channel which is capable of
introducing substitution, deletion and insertion errors at the nodes. We also assume
that the tree itself is transmitted as a two dimensional entity (and not merely string
representations). The receiver receives Y, a noisy version of U. We now show how

we recognize X* from Y. To render the problem tractable, we assume that some of
the properties of the channel can be observed. We assume that L, the expected
number of substitutions introduced in transmission, can be estimated.

Since U can be an arbitrary subsequence tree of X*, it is obviously
meaningless to compare Y with every X e H using any known unconstrained tree
editing algorithm. Clearly, before we compare Y to the individual tree in H, we have
to use the additional information obtainable from the noisy channel. Also, since the
specific number of substitutions (or insertions/deletions) introduced in any specific
transmission is unknown, it is reasonable to compare any X e H and Y subject to the
constraint that the number of substitutions that actually took place is its best estimate
which in this case is the expected value, L. One could therefore use the set {L} as the
constraint set to effectively compare Y with any X e H. Since the latter set can be
quite restrictive, we have opted to perform the comparison using a constraint set
which is a superset of {L} marginally larger than {L}. We utilized the set {L-l, L,
L+I }. Since the size of the set is still a constant, there is no significant increase in the
computation times. This is the rationale for our recognition algorithm (Algorithm
RecognizeSubsequenceTrees) given in the [OZL98].

Note that the distance Dx(T1,T 2) between the trees T 1 and T 2 subject to the

constraint x can be directly evaluated using the algorithm given in [OL94] which
essentially minimizes Const T Wt over all the values of 's' found in the constraint
set.

176

V.2 Experimental Results
The technique developed in the previous sections was rigorously tested to

verify its capability in the recognition of NSuTs. The experiments conducted were for
two different data sets which were artificially generated. We have used "relatively
long" character sequences using benchmark results involving keyboard character
errors. These results are sufficient to demonstrate the power of the strategy to
recognize noisy subsequence trees. The results we have obtained for simulated trees
are remarkable. As mentioned earlier, to our knowledge, these are the first reported
results which demonstrate that a tree can indeed be recognized by processing the
information resident in one of its noisy subsequence trees. The details of the
experimental set-ups and the results obtained follow.

V.2.1 Tree Representation
In the implementation of the algorithm we have opted to represent the tree

structures of the patterns studied as parenthesized lists in a post-order fashion. Thus,
a tree with root 'a' and children B, C and D is represented as a parenthesized list L =
(B C D 'a') where B, C and D can themselves be trees in which cases the embedded
lists of B, C and D are inserted in L. A specific example of a tree (taken from our
dictionary) and its parenthesized list representation is given in Figure I below.

Figure I: A tree from the finite dictionary H. Its associated list representation is as follows:
((((t)z)(((j)s)(t)(u)(v)x)a)((f)(((u)(v)a)(b)((p)c)g)c)(((i)(((q)(r)g)j)k)s)((x)(y)(z)e)d)

177

V.3 Experiment Setup for Data Set A
In our first experimental set-up the dictionary, H, consisted of 25 manually

constructed trees which varied in sizes from 25 to 35 nodes. An example of a tree in

H is given in Figure I above. To generate a NSuT for the testing process, a tree X*

(unknown to the classification algorithm) was chosen. Nodes from X* were first
randomly deleted producing a subsequence tree, U. In our experimental set-up the
probability of deleting a node was set to be 60%. Thus although the average size of
each tree in the dictionary was 29.88, the average size of the resulting subsequence
trees was only 11.95.

The garbling effect of the noise was then simulated as follows. A subsequence
tree U, was subjected to additional substitution, insertion and deletion errors which
deforms the tree. This was effectively achieved by passing the string representation
through a channel causing substitution, insertion and deletion errors analogous to the
one used to generate the noisy subsequences in [0087] and which has recently been
formalized by Oommen and Kashyap [OK96]. However, as opposed to merely
mutating the string representations as in [OK96] the reader should observe that we
are manipulating the underlying list representation of the tree. This involves ensuring
the maintenance of the parent/sibling consistency properties of a tree - which is not
trivial. In our specific scenario, the alphabet involved was the English alphabet, and
the conditional probability of inserting any character a e A given that an insertion
occurred was assigned the value 1/26 and the probability of a deletion was 1/20. The
table of probabilities for substitution (the confusion matrix) was based on the
proximity of the character keys on a standard QWERTY keyboard [0086, 0087,
OK96]. In our experiments ten NSuTs were generated for each tree in H yielding a
test set of 250 NSuTs. The average number of tree deforming operations done per
tree was 3.84. A typical example of the NSuTs generated, its associated subsequence
tree and the tree in the dictionary which it originated from is given below in Figure
II. Table I gives the average number of errors involved in the mutation of a
subsequence tree, U. Indeed, after considering the noise effect of deleting nodes from

X* to yield U, the overall average number of errors involved is 21.76.

Original tree
i

; i L

I

Subsequence tree I Nois)' subsequence tree

Figure II : Example of the original trees, the associated subsequence trees and their noisy versions.

178

Type of errors

I I i i

Insertion

Number of
Errors

493

Average error
per tree

1.972
Deletion 313 1.252

Substitution 153 0.612
Total average error 3.836

Table I : The statistics associated with Data Set (A) of NSuTs used in the experiments.

The results that were obtained were remarkable. 232 out of 250 NsuTs were
correctly recognized, implying an accuracy of 92.80%. This is quite overwhelming
considering the fact that we are dealing with 2-dimensional objects with an unusually
high (about 73%) error rate at the node and structural level.

V.4 Experiment Setup for Data Set B
In the second experimental set-up, the dictionary, H, consisted of 100 trees

which were generated randomly. The tree structure for an element in H was obtained
by randomly generating a parenthesized expression using the following stochastic
context-free grammar G, where,

G = <N, A, G, P>, where, N = {T, S,
of terminals - the English alphabet, G is

$ } is the set of non-terminals, A is the set
the stochastic grammar with associated

probabilities, P, given below :
T ~ (S$) with probability 1,
S ~ (SS) with probability Pl,

S ---) (S$) with probability t-pl,

S ---) ($) with probability P2,

S ---) L with probability l-p2, where X is the null symbol,

$ ~ a with probability 1, where a e A is a letter of the alphabet.

Note that a smaller value of Pl yields a more tree-like representation, and a
larger value of Pl a more string-like representation. In our experiments the values of
Pl and P2 were set to be 0.3 and 0.6 respectively. The sizes of the trees varied from
27 to 35 nodes.

Once the tree structure was generated, the actual substitution of '$' with the
terminal symbols was achieved by using the benchmark textual data set used in
recognizing noisy subsequences [0087]. Each '$' symbol in the parenthesized list was
replaced by the next character in the string. Thus, for example, one parenthesized
expression for a tree obtained using the above tree generation process was :

((((((((((($)$)$)(($)$)$)$)$)$)((((($)($)$)$)$)((($)($)(($)$)$)$)$)$)$)$)$)
The '$"s in the string are now replaced by terminal symbols to yield the following
list:
((((((((((((i)n)t)h)((i)s)s)e)•)t)((((((i)•)((n)w)e)c)a)((((•)c)((u)•)(((a)t)e)t)h)e)a)p)•)s)
The actual underlying tree for this string can be deduced from Section V.2.1.

The process as described in Section V.3 was used to generate the NsuTs. The
average size of the resulting subsequence trees was only 13.42 instead of 31.45 for
the original trees in the dictionary. In our experiments five NSuTs were generated for

179

each tree in H yielding a set of 500 NSuTs. The average number of tree deforming
operations done per tree was 3.77. Table II gives the average number of errors
involved in the mutation of a subsequence tree, U. The overall average number of
errors was 21.8.

Type of errors Number of
errors

Insertion 978
Deletion 601

Substitution 306
Total average error

Table II : The statistics associated with Data Set (A)

Average error
per tree

1.956
1.202
0.612
3.770

,f NSuTs used in the experiments.

Out of the 500 noisy subsequence trees tested, 432 were correctly recognized,
which implies an accuracy of 86.4%. The power of the scheme is obvious
considering the fact we are dealing with 2-dimensional objects with an unusually
high (about 69.32%) error rate and the fact that the corresponding uni-dimensional
problem (which only garbled the strings and did not mutate the structure) gave an
accuracy of 95.4% [0087]. Additional experimental results are found in the
unabridged paper, and are omitted here in the interest of brevity.

VIII. CONCLUSIONS
In this paper, we ha~,e considered the problem of recognizing trees by

processing their noisy subsequence trees. The solution we propose (which, to our
knowledge, is the first reported solution) was based on the theoretical work done by
Oommen and Lee [OL94] involving constrained tree editing. Given a noisy

subsequence tree Y of an unknown tree X* in H, the technique which we propose

estimates X* by computing the constrained edit distance between every X in H and
Y, based on the actual garbling properties of the error generating mechanism.

We have rigorously tested our algorithm experimentally for data sets which are
manually and randomly generated. The experimental results obtained are remarkable
considering the level of noise introduced and the fact that the garbling mechanism
mutates the string and the underlying structure which stores the trees. We are
currently working on applying these techniques to recognizing biological molecules
from their fragments.

Acknowledgements : This work was partially supported by the Natural Sciences and
Engineering Research Council of Canada.

t80

REFERENCES
[Lu79] S.Y. Lu, "A tree-to-tree distance and its application to cluster analysis",

IEEE Trans. Pattern Anal. and Mach. lntelL, Vol. PAMI 1, No. 2: pp.
219-224 (1979).

[0087] B.J. Oommen, "Recognition of noisy subsequences using constrained
edit distances", IEEE Trans. Pattern AnaL and Mach. InteIL, Vol. PAMI
9, No. 5 : pp. 676-685 (1987).

[OK96] B.J. Oommen and R. L. Kashyap, "A formal theory for optimal and
information theoretic syntactic pattern recognition". (To appear in
Pattern Recognition).

[OL94] B . J . Oommen, and W. Lee, "Constrained Tree Editing", Information
Sciences, Vol. 77 No. 3,4: pp. 253-273 (1994).

[OL97] B . J . Oommen, and W. Lee, "Constrained Tree Editing", Information
Sciences, Vol. 77 No. 3,4: pp. 253-273 (1994).

[OZL98] B . J . Oommen and R. K. S Loke, "On the Recognition of Noisy
Subsequence Trees". Unabridged version of this paper.

[SK93] D. Sankoff and J. B. Kruskal, Time wraps, string edits, and
macromolecules : Theory and practice of sequence comparison,
Addison-Wesley, (1983).

[Se77] S.M. Selkow, "The tree-to-tree editing problem", Inform. Proc. Let.,
Vol. 6, pp. 184-186 (1977).

[SZ90] B. Shapiro and K. Zhang, "Comparing multiple RNA secondary
structures using tree comparisons", Comput. AppL Biosci. vol. 6, no. 4,
309-318 (1990).

[Ta79] K.C. Tai, "The tree-to-tree correction problem", J. Assoc. Comput.
Mach., Vol. 26 : pp. 422-433 (1979).

[ZJ94] K. Zhang and T. Jiang, "Some MAX ~NP-hard results concerning
unordered labeled trees", Information Processing Letters, 49, 249-254
(1994).

[ZS89] K. Zhang and D. Shasha, "Simple fast algorithms for the editing
distance between trees and related problems", SIAMJ. Comput. Vol. t8,
No. 6 : pp. 1245-1262 (1989).

[ZSW92] K. Zhang, D. Shasha and J. T. L. Wang, "Fast serial and parallel
approximate tree matching with VLDC's", Proc. of the 1992 Symposium
on Combinatorial Pattern Matching, CPM92, 148-161 (1992).

