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ABSTRACT 
In this paper we consider the problem of recognizing ordered labeled trees by 

processing their noisy subsequence-trees which are "patched-up" noisy portions of their 

fragments. We assume that we are given H, a finite dictionary of ordered labeled trees. X* is 
an unknown element of H, and U is any arbitrary subsequence-tree of X*. We consider the 

problem of estimating X* by processing Y - a noisy version of U. We do this by sequentially 
comparing Y with every element X of H, the basis of comparison being the constrained edit 
distance between two trees [OL94], where the constraint implicitly captures the properties of 
the corrupting mechanism ("channel") which noisily garbles U into Y. Experimental results 
which involve manually constructed trees of sizes between 25 and 35 nodes and which contain 
an average of 21.8 errors per tree demonstrate that the scheme has about 92.8% accuracy. 
Similar experiments for randomly generated trees yielded an accuracy of 86.4%. To our 
knowledge this is the first reported solution to the problem. 

I. INTRODUCTION 
In this paper, we consider the following problem : Suppose we have a finite 

dictionary of labeled ordered trees, H. Let X* be any tree from H. U is an arbitrary 
Subsequence-Tree (SuT) of X* obtained by randomly deleting nodes from it. The 

resultant tree (called a subsequence-tree or SuT of X*) is further subjected to 
substitution, insertion and deletion errors yielding the Noisy Subsequence-Tree 
(NSuT), Y. Our aim is then to identify the original tree, X , by processing Y. 

Unlike the string-editing 2 problem, only few results have been published 
concerning the tree-editing problem. In 1977 Selkow [Se77, SK83] presented a tree 
editing algorithm in which insertions and deletions were only restricted to the leaves. 
Tai [Ta79] in 1979 presented another algorithm in which insertions and deletions 
could take place at any node within the tree except the root. The algorithm of Lu 
[Lu79] did not solve this problem for trees of more than two levels. The best known 
algorithm for solving the general tree-editing problem is the one due to Zhang and 
Shasha [ZS89]. Also, to the best of our knowledge, in all the papers published till the 
mid-90's, the literature primarily contains only one numeric inter-tree dissimilarity 
measure - their pairwise "distance" measured by the minimum cost edit sequence. 

1 Senior Member IEEE. 
2The literature on string editing is extensive. We refer the readers to the book written by 
Sankoff and Kruskal [SK83] and the proceedings of the recent symposia on Combinatorial 
Pattern Matching (CPM) for the state of the art techniques in sequence processing. 
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The literature on the comparison of trees is otherwise scanty : Zhang et  aL [SZ90] 
have suggested how tree comparison can be done for ordered and unordered labeled 
trees using tree alignment as opposed to the edit distance utilized elsewhere [ZS89]. 
The question of comparing trees with variable length don't care operations was 
solved by Zhang et. al. [ZSW92]. Besides these, the results concerning unordered 
trees are primarily complexity results [ZSS92] - editing unordered trees with bounded 
degrees is shown to be NP-hard in [ZSS92] and even MAX SNP-hard in [ZJ94]. The 
most recent results concerning tree comparisons is probably the one due to Oommen 
et. al. [OZL96] where the authors defined and formulated an abstract measure of 
comparison, ~(T1, T2), between two trees. 

The problem of comparing a tree with one of its possible subtrees or SuTs has 
almost not been studied in the literature at all. The only reported results for 
comparing trees in this setting have involved constrained tree distances [OL94] and 
indeed, this we will be foundational basis for the PR of noisy SuTs. 

The primary contribution of the paper is the application of the constrained tree 
distance for the NSuT recognition problem. This is achieved by considering the 
information about the noise characteristics of the channel which garbles a tree. 
Indeed, these characteristics are translated into edit constraints whence a constrained 
tree editing algorithm can be invoked to perform the classification. Besides these, our 
paper suggests a new perspective for generalized computation models. Unfortunately, 
we cannot extend the results concerning subsequence correction to this present 
problem because, as opposed to strings [Oo87], the topological structure of the 
underlying graph prohib i t s  the two-dimensional generalizations of the corresponding 
computations. Thus, inter-tree computations require the simultaneous maintenance of 
meta- tree  considerations represented as the parent and sibling properties of the 
respective trees, which are completely ignored in the case of linear structures (e.g., 
strings). The proofs of the results claimed are omitted here but included in [OL94]. 

II.  NOTATIONS AND DEFINITIONS 
IL l  Notation 

Let N be an alphabet and N* be the set of trees whose nodes are elements of N. 

Let Ix be the null tree, which is distinct from ~,, the null label not in N. I~ = N u {~,}. 

A tree T ~ N* with M nodes is said to be of size ITI=M, and is represented as the 
postorder numbering of its nodes. See [ZS89] for the advantages of this ordering. 

Let T[i] be the i th node in the tree according to the left-to-right postorder 
numbering, and let 80) represent the postorder number of the leftmost leaf 
descendant of the subtree rooted at T[i]. Thus, when T[i] is a leaf, 80) = i. T[i..j] 
represents the postorder forest induced by nodes T[i] to T[j] inclusive, of tree T. 
T[8(i)..i] will be referred to as Tree(i). Size(i) is the number of nodes in Tree(i). The 

father of i is denoted as f(i). If f0(i) = i, the node fk(i) can be recursively defined as 

fk(i) = f(fk'l  (i)). The set of ancestors of i is : Anc(i) = {fk(i) 1 0 -< k < Depth(i)}. 

II.2 Elementary Edit Operations and Sub-Trees 
An edit operation on a tree is either an insertion, a deletion or a substitution of 

one node by another. In terms of notation, an edit operation is represented 
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symbolically as : x ~ y where x and y can either be a node label or ~,, the null label. 
x = ~, and y :~ ~, represents an insertion; x ~ ~ and y = % represents a deletion; and x 
~, and y ~: Z, represents a substitution. Note that the case of  x = ~, and y = ~, has not 
been defined -- it is not needed. The formal definitions of  these follow. 

Insertion of node x into tree T : Node x will be inserted as a son of  some node 
u of  T. I f  u has sons Ul,U2,..,u k, then for some 0 < i < j < k, node u in the resulting 

tree will have sons u 1 ..... ui, x, uj ..... Uk, and node x will have no sons i f j  = i+l ,  or else 

have sons Ui+l ..... Uj_l. 
Deletion of node y from a tree T : I f  node y has sons y I,Y2 ..... Yk and node u, 

the father of  y, has sons Ul,U2 ..... uj with ui=y, then node u in the resulting tree 

obtained by the deletion will have sons Ul,U 2 ..... Ui.l,Yl,y 2 ..... yk,Ui+l ..... uj. 

Substitution of node x by node y in T : Node y in the resulting tree will have 
the same father and sons as node x in the original tree. 

Let  d(x,y) > 0 be the cost of  transforming node x to node y. I f  x ~ ~, ~ y, 
d(x,y) will represent the cost of  substitution of  node x by node y. Similarly, x ~ L, y 
= ~ and x = L, y ~ ~, will represent the cost of  deletion and insertion of  node x and y 
respectively. We assume that it is reflexive (although this is not mandatory), and that 
it obeys a "triangular" inequality constraint. Let S be a sequence Sl . . . . .  s k of  edit 

operations. An S-derivation from A to B is a sequence of trees A 0 . . . . .  A k such that 

A = A 0, B = A k, and Ai-1 "~ Ai via si for 1 < i < k. We extend the inter-node edit 

distance d(.,.) to the sequence S as : 

ISI 
W(S) = ~ d(si) • 

i=l 
With the introduction of W(S), the distance between T1 and T 2 is : 

D(T1,T2) = Min {W(S) I S is an S-derivation transforming T1 to T2}. 

II.3 Mappings between Trees 
A Mapping is a description of  how a sequence of edit operations transforms T 1 

into T 2. A mapping is a triple (M,T1,T2), where M is any set of  pairs of  integers (i,j) 

satisfying : 
(i) 1 _< i _< ITll, 1 _<j < IT21 ; 

(ii) For any pair of  ( i l ,J l )  and (i2,J2) in M, 

(a) i 1 = i 2 if and only i f j l  =J2 (one-to-one). 

(b) T l [ i l ]  is to the left of  Tl[ i2]  if  and only if T2[Jl] is to the left o f  T2[J2] 

(c) T1[i 1] is an ancestor of  T1[i2] if and only if T2[Jl] is an ancestor of  

TE[J2]. 
Whenever  there is no ambiguity we will use M to represent the triple (M,T1,T2), the 

mapping f rom T1 to T 2. Let  I, J be sets of  nodes in T1 and T2, respectively. Then 

we can define the cost o f  M as fo l lows  : 

cost (M) = ~ d(T1[i], T2[j]) + ~_~ d(Tl[i],~,) + ~_~ d(L,T2[j]) .  

(i,j)~ M i~ I  jEJ  
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Since mappings can be composed to yield new mappings [Ta79, ZS89], the 
relationship between a mapping and a sequence of edit operations can now be 
specified. 

Lemma I. 
Given S, an S-derivation Sl . . . . .  Sk of edit operations from TI to T 2, there 

exists a mapping M from T1 to T2 such that cost (M) < W(S). Also, for any mapping 
M, there is a sequence of operations such that W(S) = cost(M). 

Thus, to search for the minimal cost edit sequence we need to only search for 
the optimal mapping. 

IlL EDIT CONSTRAINTS 
Consider the problem of editing T 1 to T 2, where ITll = N and IT21 = M. 

Editing a postorder-forest of T 1 into a postorder-forest of T 2 using exactly i 
insertions, e deletions, and s substitutions, corresponds to editing Tl[1..e+s] into 
T2[1..i+o]. Bounds on the magnitudes of variables i, e, s, are constrained by the sizes 
of trees. If r=e+s, q=i+s, and R=Min{N,M}, these variables will obey the following 
constraints: 

(a) ma x{ 0 ,M-N}< i<q<M,  (b) 0 < e < r < N ,  and (c) 0 < s < R .  
Values of (i,e,s) which satisfy these constraints are termed feasible values. 

We define : 
(a) Hi = {j I max{0,M-N} <j  < M}, (b) H e = {j I 0 < j  < N}, and 

(c) H s = {j 10 <j  _< Min{M,N} }. 

H i, H e, and H s are called the set of permissible values of i, e, and s. Theorem I 
specifies the feasible triples for editing T 1 [1..r] to T2[1..q]. 

Theorem I. 
To edit T 1 [ 1..r], the postorder-forest of T 1 of size r, to T2[ 1..q], the postorder- 

forest o fT  2 of size q, the set of feasible triples is {(q-s, r-s, s) I 0 < s < Min{M,N} }. 

Theorem II. 
Every edit constraint specified for the process of editing T1 to T2 is a unique 

subset of H s. 

We refer to the distance subject to the constraint x as Dx(T1,T2). By 

definition, Dx(T 1,T2) = ~ if x = 9, the null set. We now consider the computation of 
Dx(TI,T2). 

IV. CONSTRAINED TREE EDITING 
Since edit constraints can be written as unique subsets of Hs, we denote the 

distance between forest Tl[i'..i ] and forest T2[j'..j] subject to the constraint that 
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exactly s substitutions are performed by Const_F_Wt(Tl[i'..i],T2[j'..j],s ) or more 
precisely by Const F Wt([i'..i],[j'..j],s). The distance between Tl[1..i] and T2[1..j] 
subject to this constraint is given by Const_F_Wt(i,j,s) since the starting index of 
both trees is unity. The distance between the subtree rooted at i and the subtree rooted 
at j subject to the same constraint is given by Const T Wt(i,j,s). The difference 
between Const F Wt and Const T Wt is subtle. Indeed, Const_T_Wt(i,j,s) = 
Const F_Wt(Tl[8(i)..i],T2[8(j)..j],s ). These weights obey the following properties 
proved in [OL94]. 

[,emma II 
Let i 1 

6) 
(ii) 

(iii) 

(iv) 

Anc(i) and j 1 ~ Anc(j). Then 

ConsLF_Wt(~t,~t,0) = 0. 
Const_F Wt(T 1 [~(i l)..i],~t,0) = Const_F Wt(T 1 [8(i 1)-.i- 1 ],~t,0) + 

d(T1 [i],~,). 
Const F Wt(~t, T2[8( j 1)..j],0) = Const._F_Wt(~t,T2[~i(j 1).-J- 1],0) + 

d(~,,T2[j]). 
Const_F_Wt(T l[5(il)..i],T2[8( j 1)..J],0) 

Const_F Wt(T I [8(i 1 )..i- 1 ],T2 [801 )..J] ,0) + d(T 1 [i],k) 
Min Const_F_Wt(Tl[8(il)..i],T2[8(jl)..j.1],0 ) + d(~,,T2[j]). 

(v) Const_F_Wt(T1 [8(i 1)..i],/.t,s) = 

(vi) Const_F_Wt(ll,T2[8(j 1)..j],s) = oo 

(vii) Const_F_Wt(~t,~t,s) = ~, 

i f s > 0 .  

if s>0 .  

i fs  > 0. 

Lemma II essentially states the properties of the constrained distance when 
either s is zero or when either of the trees is null. These are thus "basis" cases which 
can be used in any recursive computation of the distance. For the non-basis cases we 
have to consider the scenarios when the trees are non-empty and when the 
constraining parameter, s, is strictly positive. The recursive property of Const F Wt 
is given by Theorem HI. 

Theorem III. 
Let i 1 ~ Anc(i) andj l  ~ Anc(j). Then 

Const_F_Wt(T1 [5(il)..i],T2[8(j 1)..j],s) 

=Min "~ 

r Const__F_Wt([~i(il)..i-1 ],[~i(j 1)..j],s) + d(T1 [i],~,) 

Const_F Wt([5(i 1)..i],[8(J 1)..J- 1 ],s) + d(L, Z2[j]) 

f ConsLF_Wt( [~(i 1 )-. ~5(i) - 1 ], [801 )--~5(J )- 1 ] ,s- s2) 

Min ~+  Const__F_Wt([~i(i)..i- 1 ], [80)..j- 1 ] ,s2-1) 
l<_s2~Clin { Size(i);Size(j);s } 

/ 

l +  d(Tl[i],T2[j]) 
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Theorem III naturally loads to a recursive algorithm, except that its time and 
space complexities will be prohibitively large. However, under certain conditions, if 
the removal of  a sub-forest leaves us with an entire tree, the computation is 
simplified. Thus, if 8(i)=~i(il) and Nj)MS(jl) (i.e., i and i 1, j and Jl span the same 

subtree), the subforests from Tl[8(il)..8(i)-l] and T2[~(jl)..8(j)-I] do not get 

included in the computation. If not, the Const F Wt(T 1 [8(i 1)--i],T2[8(J 1).all,s) can be 

considered as a combination of the Const F Wt(Tl[g(il). .6(i)-l],  T2[8(jl)..g(j)-l],s- 
s2)) and the tree weight between the trees rooted at i and j respectively, which is 

ConsLT_Wt(id,s2) as below. 

Theorem IV. 
Let i 1 ~ Anc(i) and j I E Anc(j). Then the following is true : 

If 8(i) = 801) and 8(j) = ~(j I ) then 
ConsLF_Wt(TI [8(i 1)..i],T2[fXj I )..j],s) 

r Const_F_Wt(T I [8(i I )..i- I I,T2[Nj I ).-J],s) + d(Ti [i],Z,) 

= Min ~ConsLF_Wt(Tl [6(i l)..i],T2tS(j l)..J-I],s) + d(~.,T2lJ]) 
/ 

l, Const_F_Wt(T! [~5(i 1)..60)- 1 ],T2[&(j 1)..~(J)-1 ],s- I ) + d(T1 [i],T2lj]) 
Otherwise, 

Const F__Wt(T 1 [~(i 1 )-.i],T2[6(J I )..J],s) 
I ConsLF_Wt(T 1 [ 8(i 1 )..i- 1 ] ,T2 [/5(j 1 )-.J],s) + d(T 1 [i],~) 

/Const_F_Wt(T 1 [8(i I )..i],T2[8(j I ).-J" 1],s) + d(L,T2[j]) 
=Min 

[ Min j'Const_.F_Wt(Tl [6(i I )..6(i)-1 ],T2[~5(j l)..~5(j)-1 ],s-s2) 
l 

1,1 <s2<_Min { Size(i);Size(j);s } [+ ConsLT_Wt(i,j,s2 ) 
% 

Theorem IV suggests that we can use a dynamic programming flavored 
algorithm to solve the constrained tree editing problem. The theorem also asserts that 
the distances associated with the nodes which are on the path from i I to 8(il) get 
computed as a by-product in the process of computing the Const_F_Wt between the 
trees rooted at i 1 and j 1. These distances are obtained as a by-product because 
whenever an Const_F Wt is computed, if the forests are trees, it is retained as a 
ConsLT_Wt.  The set of  nodes for which the computation of  Const T Wt must be 
done independently before the Const_T_Wt associated with their ancestors can be 
computed is called EssentialNodes,  and these are nodes for which the computation 
would involve the second case of Theorem IV as opposed to the first. We define the 
set Essential_Nodes of  tree T as : 

Essential_Nodes(T) = {k I there exists no k' > k such that ~(k) = ~5(k') }. 
Intuitively, this set will be the roots of all subtrees of  tree T that need separate 
computations. Thus, the Const_T_Wt can be computed for the entire tree if 
Const T Wt of  the Essent ialNodes are computed, and using these stored values, the 
rest of the Const T Wts can be computed. Using Theorem IV we can now develop a 
bottom-up approach for computing the Const T Wt between all pairs of subtrees. 
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Note that the function 50 and the set Essential_Nodes0 can be computed in linear 
time. 

We shall now compute Const_T_Wt(i, j, s) and store it in a permanent three- 
dimensional array Const_T Wt. In the interest of brevity the algorithms used in this 
paper are omitted here, but can be found in [OZL98]. The correctness of Algorithm 
T_Weights is proven in detail in [OL94]. 

As a result of invoking Algorithm T_Weights (which repeatedly invokes 
Algorithm Compute_Const_T_Wt for all pertinent values of i and j) we will have 
computed the constrained inter-tree edit distance between T 1 and T2 subject to the 
constraint that the number of substitutions performed is s, for all feasible 
substitutions, s. The space required by the above algorithm is obviously O(ITll • IT21 
• Min { IT 1 I, IT21 }). If Span(T) is the Min { Depth(T), Leaves(T) }, the algorithm's time 

complexity is O(ITll * IT21 * (Min{ITll, IT21}) 2 * Span(T1) * Span(T2)). 

V.  T H E  NOISY SUBSEQUENCE TREE RECOGNITION PROBLEM 
V.1 Principles Used in Solving the Noisy Subsequence-Tree Recognition Problem 

Using the foundational concepts of constrained edit distances explained in the 
previous sections, we are now in a position to present our solution to the Noisy 
Subsequence Tree (NSuT) Recognition Problem. We assume that a "Transmitter" 

intends to transmit a tree X* which is an element of a finite dictionary of trees, H. 
However, it opts to transmit one of its subsequence trees, U by randomly delete 

nodes from X*. The transmission of U is across a noisy channel which is capable of 
introducing substitution, deletion and insertion errors at the nodes. We also assume 
that the tree itself is transmitted as a two dimensional entity (and not merely string 
representations). The receiver receives Y, a noisy version of U. We now show how 

we recognize X* from Y. To render the problem tractable, we assume that some of 
the properties of the channel can be observed. We assume that L, the expected 
number of substitutions introduced in transmission, can be estimated. 

Since U can be an arbitrary subsequence tree of X*, it is obviously 
meaningless to compare Y with every X e H using any known unconstrained tree 
editing algorithm. Clearly, before we compare Y to the individual tree in H, we have 
to use the additional information obtainable from the noisy channel. Also, since the 
specific number of substitutions (or insertions/deletions) introduced in any specific 
transmission is unknown, it is reasonable to compare any X e H and Y subject to the 
constraint that the number of substitutions that actually took place is its best estimate 
which in this case is the expected value, L. One could therefore use the set {L} as the 
constraint set to effectively compare Y with any X e H. Since the latter set can be 
quite restrictive, we have opted to perform the comparison using a constraint set 
which is a superset of {L} marginally larger than {L}. We utilized the set {L-l, L, 
L+I }. Since the size of the set is still a constant, there is no significant increase in the 
computation times. This is the rationale for our recognition algorithm (Algorithm 
RecognizeSubsequenceTrees) given in the [OZL98]. 

Note that the distance Dx(T1,T 2) between the trees T 1 and T 2 subject to the 

constraint x can be directly evaluated using the algorithm given in [OL94] which 
essentially minimizes Const T Wt over all the values of 's' found in the constraint 
set. 
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V.2 Experimental Results 
The technique developed in the previous sections was rigorously tested to 

verify its capability in the recognition of NSuTs. The experiments conducted were for 
two different data sets which were artificially generated. We have used "relatively 
long" character sequences using benchmark results involving keyboard character 
errors. These results are sufficient to demonstrate the power of the strategy to 
recognize noisy subsequence trees. The results we have obtained for simulated trees 
are remarkable. As mentioned earlier, to our knowledge, these are the first reported 
results which demonstrate that a tree can indeed be recognized by processing the 
information resident in one of its noisy subsequence trees. The details of the 
experimental set-ups and the results obtained follow. 

V.2.1 Tree Representation 
In the implementation of the algorithm we have opted to represent the tree 

structures of the patterns studied as parenthesized lists in a post-order fashion. Thus, 
a tree with root 'a' and children B, C and D is represented as a parenthesized list L = 
(B C D 'a') where B, C and D can themselves be trees in which cases the embedded 
lists of B, C and D are inserted in L. A specific example of a tree (taken from our 
dictionary) and its parenthesized list representation is given in Figure I below. 

Figure I: A tree from the finite dictionary H. Its associated list representation is as follows: 
((((t)z)(((j)s)(t)(u)(v)x)a)((f)(((u)(v)a)(b)((p)c)g)c)(((i)(((q)(r)g)j)k)s)((x)(y)(z)e)d) 
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V.3 Experiment Setup for Data Set A 
In our first experimental set-up the dictionary, H, consisted of 25 manually 

constructed trees which varied in sizes from 25 to 35 nodes. An example of a tree in 

H is given in Figure I above. To generate a NSuT for the testing process, a tree X* 

(unknown to the classification algorithm) was chosen. Nodes from X* were first 
randomly deleted producing a subsequence tree, U. In our experimental set-up the 
probability of deleting a node was set to be 60%. Thus although the average size of 
each tree in the dictionary was 29.88, the average size of the resulting subsequence 
trees was only 11.95. 

The garbling effect of the noise was then simulated as follows. A subsequence 
tree U, was subjected to additional substitution, insertion and deletion errors which 
deforms the tree. This was effectively achieved by passing the string representation 
through a channel causing substitution, insertion and deletion errors analogous to the 
one used to generate the noisy subsequences in [0087] and which has recently been 
formalized by Oommen and Kashyap [OK96]. However, as opposed to merely 
mutating the string representations as in [OK96] the reader should observe that we 
are manipulating the underlying list representation of the tree. This involves ensuring 
the maintenance of the parent/sibling consistency properties of a tree - which is not 
trivial. In our specific scenario, the alphabet involved was the English alphabet, and 
the conditional probability of inserting any character a e A given that an insertion 
occurred was assigned the value 1/26 and the probability of a deletion was 1/20. The 
table of probabilities for substitution (the confusion matrix) was based on the 
proximity of the character keys on a standard QWERTY keyboard [0086, 0087, 
OK96]. In our experiments ten NSuTs were generated for each tree in H yielding a 
test set of 250 NSuTs. The average number of tree deforming operations done per 
tree was 3.84. A typical example of the NSuTs generated, its associated subsequence 
tree and the tree in the dictionary which it originated from is given below in Figure 
II. Table I gives the average number of errors involved in the mutation of a 
subsequence tree, U. Indeed, after considering the noise effect of deleting nodes from 

X* to yield U, the overall average number of errors involved is 21.76. 

Original tree 
i 

; i  L 

I 

Subsequence tree I Nois)' subsequence tree 

Figure II : Example of the original trees, the associated subsequence trees and their noisy versions. 
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Type of errors 

I I i i  

Insertion 

Number of 
Errors 

493 

Average error 
per tree 

1.972 
Deletion 313 1.252 

Substitution 153 0.612 
Total average error 3.836 

Table I : The statistics associated with Data Set (A) of NSuTs used in the experiments. 

The results that were obtained were remarkable. 232 out of 250 NsuTs were 
correctly recognized, implying an accuracy of 92.80%. This is quite overwhelming 
considering the fact that we are dealing with 2-dimensional objects with an unusually 
high (about 73%) error rate at the node and structural level. 

V.4 Experiment Setup for Data Set B 
In the second experimental set-up, the dictionary, H, consisted of 100 trees 

which were generated randomly. The tree structure for an element in H was obtained 
by randomly generating a parenthesized expression using the following stochastic 
context-free grammar G, where, 

G = <N, A, G, P>, where, N = {T, S, 
of terminals - the English alphabet, G is 

$ } is the set of non-terminals, A is the set 
the stochastic grammar with associated 

probabilities, P, given below : 
T ~ (S$) with probability 1, 
S ~ (SS) with probability Pl, 

S ---) (S$) with probability t-pl,  

S ---) ($) with probability P2, 

S ---) L with probability l-p2, where X is the null symbol, 

$ ~ a with probability 1, where a e A is a letter of the alphabet. 

Note that a smaller value of Pl yields a more tree-like representation, and a 
larger value of Pl a more string-like representation. In our experiments the values of 
Pl and P2 were set to be 0.3 and 0.6 respectively. The sizes of the trees varied from 
27 to 35 nodes. 

Once the tree structure was generated, the actual substitution of '$' with the 
terminal symbols was achieved by using the benchmark textual data set used in 
recognizing noisy subsequences [0087]. Each '$' symbol in the parenthesized list was 
replaced by the next character in the string. Thus, for example, one parenthesized 
expression for a tree obtained using the above tree generation process was : 

((((((((((($)$)$)(($)$)$)$)$)$)((((($)($)$)$)$)((($)($)(($)$)$)$)$)$)$)$)$) 
The '$"s in the string are now replaced by terminal symbols to yield the following 
list: 
((((((((((((i)n)t)h)((i)s)s)e)•)t)((((((i)•)((n)w)e)c)a)((((•)c)((u)•)(((a)t)e)t)h)e)a)p)•)s) 
The actual underlying tree for this string can be deduced from Section V.2.1. 

The process as described in Section V.3 was used to generate the NsuTs. The 
average size of the resulting subsequence trees was only 13.42 instead of 31.45 for 
the original trees in the dictionary. In our experiments five NSuTs were generated for 
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each tree in H yielding a set of 500 NSuTs. The average number of tree deforming 
operations done per tree was 3.77. Table II gives the average number of errors 
involved in the mutation of a subsequence tree, U. The overall average number of 
errors was 21.8. 

Type of errors Number of 
errors 

Insertion 978 
Deletion 601 

Substitution 306 
Total average error 

Table II : The statistics associated with Data Set (A) 

Average error 
per tree 

1.956 
1.202 
0.612 
3.770 

,f NSuTs used in the experiments. 

Out of the 500 noisy subsequence trees tested, 432 were correctly recognized, 
which implies an accuracy of 86.4%. The power of the scheme is obvious 
considering the fact we are dealing with 2-dimensional objects with an unusually 
high (about 69.32%) error rate and the fact that the corresponding uni-dimensional 
problem (which only garbled the strings and did not mutate the structure) gave an 
accuracy of 95.4% [0087]. Additional experimental results are found in the 
unabridged paper, and are omitted here in the interest of brevity. 

VIII. CONCLUSIONS 
In this paper, we ha~,e considered the problem of recognizing trees by 

processing their noisy subsequence trees. The solution we propose (which, to our 
knowledge, is the first reported solution) was based on the theoretical work done by 
Oommen and Lee [OL94] involving constrained tree editing. Given a noisy 

subsequence tree Y of an unknown tree X* in H, the technique which we propose 

estimates X* by computing the constrained edit distance between every X in H and 
Y, based on the actual garbling properties of the error generating mechanism. 

We have rigorously tested our algorithm experimentally for data sets which are 
manually and randomly generated. The experimental results obtained are remarkable 
considering the level of noise introduced and the fact that the garbling mechanism 
mutates the string and the underlying structure which stores the trees. We are 
currently working on applying these techniques to recognizing biological molecules 
from their fragments. 
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