
Character Recognition with
k-Head Finite Array Automata

II(~nning Fcrnau t *, [~mlolf Fr(;uu(l ~, and Markus Ilolzcr I

I Wilhehn-Schickard-hmtitut fiir hfformatik, Universit£t Tfil)ingen
Sand 13, D-72()76 Tiibingen, Germany

email: {fernau, holzer}¢inforraat ±k. uni-tuebingen, de
Institut fiir Computcrsprachen, Technische Universit~it Wicn

Resselgasse 3, A-1040 Wien, Austria, email: f reund~logic , at

Abstract . We+ introduce the concept of k-head finite two-dimensional array
automata and show how this model of two-dimensional array automata
can be applied in the field of syntactic character recognition. Moreover,
we discuss some of the l)roblems arising with implementing the theoretical
concept to obtain an efficient tool for the syntactic analysis of handwritten
(ul~perclu~c) characters.

1 I n t r o d u c t i o n

In the field of syntactic character recognition, the theoretical concept of array
grammars represents an interesting formal framework that allows for accurate de-
scriptions of two-dimensional patterns like (handwritten, uppercase) characters.
Whereas "pure" context-free array grammars as proposed in [19] not yet allow
efficient implementations of the array grammar approach for the syntactic clus-
tering analysis of handwritten characters, additional features like the controlled
use of productions yield more efficient algorithms as exhibited in [9] within the
framework of graph controlled grammars; moreover, the model has to incorporate
suitable error measures computed during the analysis of the underlying pattern in
order to allow for most accurate analysis results distinguishing between different
clusters of characters.

Seen from a theoretical point of view, such additional features increase the
generative power of the array model, yet as we operate on a bounded rectangle only,
this is of minor importance; on the other hand, a controlled use of array productions
reduces the non-determinism of the analyzing device and thus increases efficiency
by minimizing the needs to backtrack.

There are some crucial differences between an approach based on neural net-
works and an approach based on a syntactical model like that proposed in this
paper: In a trained neural network, the incorporated features are hardly transpar-
ent to the user. In our syntactical approach, we obtain reproducible results, because
the characteristics of the letters as well as suitable error measures have to be de-
fined during the design phase of the tool. This also allows us to make experiments

* Supported by Deutsche Forschungsgemeinschaft grant DFG La 618/3-2.

283

with the parameters weighting different errors as deviations of lines, gaps in tile
lines, etc. Hence, the more complicated design of all the different grammars for
each letter on ttle other hand allows us to ol)tain more accuratc results.

In [5] prcseribed teams of array productions (first investigated from a theoretical
point of view in [8]) were proposed as another control mechanism to be used for
increasing the (,lli(:iency of the, mmlyzi~Jg mod(,l. With l)r(,~s¢:il)(:(1 teams, a I)oml(lcd
number of array productions is applied in paralh,~l to the underlying array. This
approach resembles the idea of the cooperation of agents, which is a usual strategy
for solving complex problems.

In this paper we elaborate how k-head finite array automata, which were already
defined in [7] and, from a theoretical point of view, are closely related to regulated
array gra~nmar systems with prescribed teams of finite index as investigated in [6],
can be used for tile syntactic clustering analysis of handwritten characters.

In the next section, we I)resent the formal framework of (two-dimensional) arrays
and array grammars as well as of the new model of k-head finite array automata.
In the third section, we describe how (handwritten) characters can be analyzed
b~ us~,~g suitable k-head finite array automata and discuss some of tl .; problems
arising when going to implement such a theoretical model in such a way that
an cfIicient analysis of given arrays representing handwritten characters becomes
possible. A short discussion of the results exhibited in this paper and an outlook
to future research topics conclude the paper.

2 T h e F o r m a l F r a m e w o r k

In this section we introduce tile deiinitions and notations for arrays, (graph con-
trolled) array grammars, and k-head finite array automata (e.g. see [2], [6], [16],
[18]). For the basic notions and results of formal language theory addressed in this
paper we refer the reader to [3].

2.1 Arrays and array grammars

Let Z denote the set of integers, and let V be an alphabet. Then a (two-dimen-
sional) array A over V is a function A : Z 2 -~ V U {#}, where shape(A) =
{v e Z ~ [A (v) ~ #} is finite and # ~. V is called tile background or blank symbol.
We usually shall write A = {(v, A (v)) tv E shape (A)}. The set of all two-dimen-
sional non-empty arrays over V shall be denoted by V +2, Any subset of V +2 is
called an array language.

Given an array A E V +2 (for some alphabet V) and a finite pattern ~ (i.e., a
partial function Z 2 -4 V U {#} with finite domain) of symbols in V U {#}, we caJl
say that ~ is a sub-pattern of A, if we can place a on A such that all squares of c~
marked by symbols in V coincide with the corresponding symbols in A and each
blank symbol # in ¢~ corresponds to a blank symbol # in A.

An (isometric) array grammar is a construct G = (VN , VT , # , P, (Vo, S)), where
VN, VT are disjoint alphabets, # is a special (blank) symbol, v0 E Z 2 is the start
vector and S E N is the start, symbol, and P is a finite set of rewriting rules of

284

the form a -4/3, where rt, fl arc linite pat,terns over VN U V;r U {# } satisfying the
condition that the shapes of ~v and/:I are identical (we say that they are isometric).

Thus, tor an array grammar G = (I/N, Vr ,# ,P , (vo ,S)) we can define the
rela.tion Jl - -~ B, for ./I, lg G (VN U 1/;7') +2 , if there is a rulo. (~ -4 fl E P
Sllch that tv is a sub-pal, l,ern of ..4 and B is obtained by r~;placing ¢~ in Yl by /3
(remember tha.t ~v and /~ are isom~t, ric). The retlexiw~ and transit,iw; closm'e of
=i~ is denoted by ==**, a.nd the arr~y l;mguage generated by G is detined by
L(G) = {..4 E V,i~z}{(vo,S)} ~ * A}. An array production ,r -4 fl in an arr~\y
grammar is said to be

1. monotone if the n o n - # symbols in et are not replaced by # in [3,
2. #-context-free if c~ consists of exactly one nonternfinal and some occurrences

of blank synlbols # ,
3. context-free if it is #-context-free and monol,one.

An array g rammar is said to be of type M O N , # -CF, or CF, respectively, if ev-
ery array production in P is monotone, #-context-free, or context-free, respectively.
The same notation is used for the corresponding (families of) array languages.

2.2 Contro l m e c h a n i s m s

In the following, we give the necessary definitions of graph controUed array gram-
mars and languages. Concerning these control mechanisnls as well as many other
interesting results about regulated rewriting in the theory of string languages, the
reader is referred to [3].

A two-dimensional graph controlled grammar [9] is a construct G = (VN, VT,
#, (P, L~,~, LIi,~), (vo, S)); VN and Vr are disjoint alphabets of non-terminal and
terminal symbols, respectively; v0 is the start vector, S E VN is the start symbol; P
is a finite set of productions p of the form (l (p) : 7r (l (p)), a (l (p)), ~o (l (p))), where
l (p) E Lab (G), Lab (G) being a set of labels associated (in a one-to-one manner) to
the rules p in P, 7r (l (p)) is an array production over Vtv U I/T, a (l (p)) C Lab (G)
is the success field of the rule p, and ~ (l (p)) is the failure field of the rule p;
Li,~ C Lab (G) is the set of initial labels, and Lfln C_ Lab (G) is the set of final
labels. For p E P and v, w E (VN U liT) +2 we define (v, l (p)) ==~G (w, k) if and only
if either 7r (I (p)) is applicable to v, the result of the application of the production
7r(l(p)) to v is w, and k E a (l (iv)), or ~r (l (p)) is not applicable to v, w = v, and
k e ~o (l (p)). Let wo(vo) = S and Wo(V) = # for v E Z 2 \ v0 define the start array
w0. The array language generated by G is

L(G) = {w E V.+21 (wo,to) ~ e . (wi , l l) ==>a . . . (wk , lk) ,k >_ O,
wj E (VN U Y;r) +2 , lj e Lab(G) for 0 <_ j < k,wk = w, lo E Li, , lk E Lsi,,} .
If the failure fields qo (l (p)) are empty for all p E P, then G is called a graph

controlled array grammar without appearance checking.
A graph controlled array grammar is said to be of type X if every array pro-

duction appearing in this grammar is of the corresponding type X, too; for every
X E { # - C F , CF} , by GCac (X) and GC (X) we denote the array languages de-
scribed by graph controlled array gramnmrs and graph controlled array grammars
without appearance checking, respectively, containing only productions of type X.

285

2.3 Ti le f ini te index r e s t r i c t i on

Usually, the numl)er of non-terminal symbols occurring in the sententiM forms of a
derivation is not bounded, yet a natural measure for the complexity of the evolving
l,ev.mivml oh iecl.. Even in somo. al)l~lications as cha.racter recogniticm wo can restrict
ourselves to ~ quite low bound of non-t, erminal symbols occurring in the senteutial
forms of a deriwttion as, for example, exhilfit(,d in [5]. lhmce, we introduce the
following defiuitions:

The index of a derivation D of a terminal object w in an array grmnmar G is
defined as the maximal number of non-terminal symbols occurring in an internm-
diate sentential form. A grammar G is said to be of index k if every word w E L(G)
has a derivation D of index at, most k. This definition also makes sense for graph
controlled array gramrnars with or without appearance checking etc.

For a given array language L and the class of graph controlled array grammars
of type X, we say that L has index k with respect to this class, abbreviated as

L E GC~ 1 (X), if there exists a graph controlled grammar G of index k and type X

such that L = L (a) . Furthermore, let GC~: i''1 (X) = U~:>i ac[~ 1 (X) denote the
class of graph controlled finite index languages of l,yI)e X.-In those cases where we
do not allow ai)l)earan(:e checking, we siml)ly omit the subscript ac,

2.4 k -head finite array a u t o m a t a

We are now going to define k-head finite array automata, which we will use as
the formal basis of the tool for syntactic ctmracter recognition described in the
following section. In the string case, multi-head finite automata first were described
in [14]. For various results on two-clinmnsionat automata, the reader is referred to
[1], [10], [11], and [12]. A (2-dimensional) k-head finite array automaton of type X,
X E {#-CF, CF} is a construct M = (VN, VT, #, (P, 7~, F), (vo, S)), such that
(1) (VN, VT, #, P, (vo, S)) is a grammar of type X; (2) T¢ is a set of subsets (called
teams) of P such that each set (team) in ~ contains at most k array productions and
for each set (team) R E T¢ it is true that each non-terminal symbol occurs at most
once within the left-hand side of a rule in R; (3) F C P so that R = {PI , . . . ,Pm}
can be applied in the so-called appearance checking mode in such a way that any
of the Pi appearing in F can be skipped, if pi is not applicable to the sentential
form after having t e an R chosen to he applied. If F is empty, then we call M a
finite k-head array automaton without appearance checking.

In general, tile configurations of M are objects from the set

{(a ,a) , Ca, X) , (# , Y) I ,~ e Vr,X e Vr, U {#} ,Y e Vr¢} +2 ,

where the first component always contains the input array and the second compo-
nent keeps track of the array scanned so far by M. The work of the automaton M
on a given array from I/~ 2 now is defined as follows: Given an input array A E V +2,
the initial sentential array form (configuration) is

cocA) = {(v,(A(v), #)) i , , e z 2 \ {vo}} u s)) } .

286

More precisely, a configuration (2 of such an automaton may be split into (1) a
set of already verified (read) positions containing symbols (a, a) with a E VT, (2)
a set of positions containing symbols (a, #) which reinain t,o be verified, (3) a set
of at most k synibols of the form (b, X) with b E ~v U {#}, X E VN. Comparing
our automa.ton model with t.radil,iona.l ones, one sees tl,at the era'rent state of the
al l l ,Ol l l l l l , I) l l J i / iS relii'esenl,ed by the set, of lloli-terulinM synibois Y occurrilig hi the
pairs (b, 71") of the Cllrrent arr;.i,y.

The idea of apl)lying at team in 7~ is as follows: (1) By applying the team all
the non-terminal symbols appearing in the current array are derived in parallel. (2)
At each position where we already find a terminal symbol in the underlying array,
this terminal symbol must coincide with the corresponding symbol at this position
in the originally given art W. We would like to mention that the chosen domains of
the a r rw productions uiight overlap. As in [6] we deniand that at, those positions
where a non-blmik symbol will result the domains of the chosen suban'ays unlst not
overlap, whereas we allow the sensing for a blank symbol at a specM position from
different positions. I~5.1rthermore, the aplJlication of a team is only allowed if all non-
terminM symbols occurring in the sentential form are affected by the team, at least
in the aplmarance checking lnode. This guarantees that in a, derivation yielding a,
ternliltal object tile nunlber of llOll-l, erlilillltl sytilbols occurring ill the interniediate
sentential forms can never exceed the maximal number of context-free productions
occurring in any of the teams in 7~.

Formally, the derivation relation ==>M for M is defined as the union over all
team relations FR for 12 E 7~. Let R = {Pl ,p,}. For a configuration C, let
C(2) denote the projection to the second component of the letters. Having two
configurations C, C', we write C Fit C' if and only if (1) every variable occurring in
C(2) occurs only once; (2) every wn'iable occurring in C'(2) occurs only once; (3)
every p~ E R either is applicable to C(2) or belongs to F; (4) let R(C) denote the
set of applicable rules of R; then, the set of variables occurring in left-hand sides
of rules in R(C) coincides with the set of variables occurring in C; (5) the domains
of the subarrays to be replaced by" the applicable rules of _R must not overlap at
positions where according to the right-hand sides of these rules non-blank symbols
will result.

The array language accepted by M therefore is defined by

L(M) = { A t A E V+2,Co (A) =:=>~ { (v , (A(v) ,A(v))) l v E shape(A)}}.

Observe that due to our definitions, a head of the automaton, which is repre-
sented by one of the at most k (different) variables appearing in the current array,
reads out the symbol in the f rs t component jusl~ when leaving this position with
putting there the exactly same terminal symbol into the second component. As the
terminal symbol at a specific position is already uniquely determined by the first
position we could also put only a specific marker symbol into the second compo-
nents just to mark these positions as non-reachable by any head of the automaton
anymore.

The family of all array languages accepted by k-head finite array automata of
type X, X E {#-OF, CF}, is denoted by k-FAc, c (X). In those cases where we do
not allow appearance checking we simply omit the subscript ac.

287

2.5 A c o n c r e t e examp le

Let us now give an example of a two-dimensional 4-head finite array automaton
that accepts the cluster of ideal le, tters "H" of arbitrary size:

M = ({S,L,R, DL,UL,DR, UI~}, {a}, # , (P,T~,O), {vo,S}) ;

P = { S # + L R , # L - + L a , R # + a l ~ ,

UL # Un # U~, # Un
L -+ a,12 --+ a ' U L -+ a ' U R -+ a '

DL # Dt~

Dr, a Dn a Ur --+ a, Ut~. -+ a, DL ~ a, Dn ~ a~
-+ D , , ' # + t b ¢ ' J

n = { { S # + L R } , { # L - ~ L a , R # + a R } ,

UL # U. }
L -+ a, R -4 a ,

DL # Dn

_+ UL # .4 UR DL a DR
UL a 'Un a ' # "+ DL' #

{UL ~ a, Un -+ a, DL ~ a, Dn ~ a}}.

a}
--} DR '

A typicM computation of M is tile following one:

(a, #) (a, #) (a, #) (a, #)
(a, #) (~, #) (a, #) (a, #)

(a, S) (a, #) ::=*M (a,L) (a,R)
(a, #) (a, #) (a, #) (a, #)
(a, #) (~, #) (a, #) (a, #)

::=0 M

(a, #) (,~, #) (a, UL)
(a, UL) (a, UR) (a,a)

(a, a) (a, a) =::~M
(a, DL) (a, DI~) (a, a)
(a, #) (a, #) (a, DL)

(~, a) (a, a)

(a, Un)
(a,a)

a, a)

Ca, Dn)

==~M

(a, a) (a, a)
(a, a) (a, a)

288

2.6 So m e theo re t i ca l resu l t s

The comtmt, ational power of k-head finite a r rw automata was studied in [7], where
tile following theoretical results were proved: For X E {#-CF, CF}, we have

1. Ut.>_l k-FA (X) = GCrli,d (X) as well as
pr,[Ihd 2. Uk>_l k-FAa.,, (X) = ,,,,a~. (X).

As an important implication of these theoretical results tbr the i)r~u:tical imple.-
mentation discussed in the following section we wouhl like to mention that adding
control graphs to k-head finite array automata (in order to get more control on tile
inherent non-determinism with respect to tim choice of a suitable team) theoreti-
cally does not increase the powe.r of the model.

3 Implementation Features

In this sec, tion we discuss some of the main prol)lems we have to take care of ~vhen
implementing a tool based on the th(:orcl,ical fralnework described in the linnet(ling
section.

3.1 Data acquisition and preprocessing

Handwritten characters were acquired from hundreds of persons on specific forms
and then scanned in order to obtain digital pixel images. A reference to the database
obtained in that way can be found in [4].

The scanned characters first were normalized to fill out a 320 x 400 grid in
order to get comparable patterns. Then noisy pixels were eliminated. After noise
elimination, the resulting arrays on the 320 x 400 grid were mapped on a 20 x 25
grid. These arrays on the 20 x 25 grid then were subjected to a thinning algorithm
(e.g., see [17]) which finally yielded unitary skeletons of the digitized characters.

3.2 Syntactic analysis by k-head finite array automata

The unitary skeletons of the digitized characters now are the input for the syntactic
analyzing tool based oll the formal model of k-head finite array automata. For each
letter in the alphabet, such an automaton has to be designed in a suitable way. For
cxample, compare the 4-head finite array automaton for the letter "H" described
in the prcccding section.

An important feature of tile palsing sequence depicted in the example given
in Subsection 2.3 is the determinism of the given derivation, i.e., for each array in
L (M) there is exactly one parsing derivation. For arrays not in L (M), the crucial
moment is the change from the horizontal line to the vertical lines. Yet in this
special case of M, the possibility of a non-deterministic choice in the underlying
pattern immediately implies that this pattern cannot belong to L(M). Yet for
practical implementations where we also want to recognize non-ideal patterns in

289

0
O 0

0 0 0
0 0 0 0

0 0 0
O 0

0

Fig. 1. Lookahead region (the current head position is indicated by a filled circle, the
positions of the lookahcad region by circles).

a decent way, this is one of the most important problems wc have to deal with.
One l)ossible solution is depicted in Figur(, 1, i.e., looking ahead to larger arras
for possible continuations of the mmlysis instead of searching for the most suitable
subpatW, rns by backtracking.

3.3 E r r o r m e a s u r e m e n t

One of the most important features of an efficient tool is to use suitable error
measures which allow us to obtain reasonable clusters for the different letters in
the alphabet. The main features constituting the distance between a given array
obtained from a realistic pattern and the ideal cluster are the number of gaps, the
deviation of lines, and the number of unused pixels.

For example, in order to cover deviations of a horizontal line, a head of the
automaton going to the right not only has to look at the next position to the right,
but also at the positions in the diagonals to the right as depicted in Figure 2.

...... _ 2 o l

• o o] •
©

Fig. 2. Deviation of a horizontal line (the current head position is indicated by a filled
circle, the positions of Imssiblc continuatimLs of the line to the right by non-fiUcd circles).

Moreover, sometimes the border line between two different letters is quite "flu-
ent" (see Figure 3). For example, the array represented by the filled circles will
still be recognized as an "H" by a tot of people, wtmreas when adding the pixels
indicated by the non-filled circles most people will agree in recognizing this array
as an "A' , because the upper endings of tile vertical lines now are close enough to
each other; yet the question remains ilow to determine exact values for the distance
of these endings as well as for the deviations of the vertical lines in order to sep-
arate the cluster of arrays representing the symbol "A" from the cluster of arrays
representing the symbol "H".

290

I I I I 1 1 1 , , ,1/ ' t4" ,o, IIII, ,,
I I i I Io l I I Io l I I I I [I I
i I I le l i I I I le l i I I i i I

III l : l l l l l"""fH,,.,,,
~ L I I I I I i l I I I n I I 1ol I I I I I

I I 1 1 le t I I I I I I le l I t ~
[~ r l i t l e l i i 1 i i t 1 t l e l i i i i

FI+Ft-q%t+H-H4 .H+H ~ l _ L L l _] _ l o l o ~ t J I L l I le t t I I I

I I le l I I i I t t 1 I I e ~ L J
1 I 1ol I I I I I I Io l I..J._L,,I
1 1 I l l I I I I I I Io | I I I I
t I te l I I I I t 1 1101 I I I
t l e l I 1 t I I I I I te l 1 1 t
I te l I f t I I I I I l e l I
I ! 1 I I I I I I I I I I 101 H

t : I I ! H l ' " " ' " ' " , t l l 1 1 1 o l I I
t o I I t 1 1 t I f 1 I Io t I
I l l l f l t l l l I I I ! 1 1

Fig. 3. ()ll the Imr&,r between "It" and "A"

The main featllres of a giw, a character that, may corltribute to an error measure
are the deviations from the lines buihling up an ideal letter aud the remaining
pixels not covered by the syntactic analysis. Yet also more elaborated features as
the distances of end points of lines (compare the discussion above concerning the
letters "A" and "H" may increase tile error and thus help to distinguish between
two clusters representing different letters.

4 S u m m a r y a n d F u t u r e R e s e a r c h

We have shown that k-head finite array automata represent a new promising the-
oretical approach for the efficient syntactic analysis of characters. In order to in-
crease the efficiency of the implemented tool, the analysis of a given pattern by
the k-head finite array automata defined for different characters should be car-
ried out in parallel, which would also allow us to avoid to continue the analysis
by k-head finite array automata having computed an error greater than the error
computed by a k-head finite array automaton having already finished the analysis
of the given pattern. Moreover, we would like to point out that in this paper we
only have presented part of a hybrid system also containing a quick pre-analysis
part and a neural network part. So far we have considered two variants of such
a quick pre-analysis: The first one checks for specific crossing points with vertical
and horizontal lines, whereas tile second one is based on a neural network using
the density of pixels in the rows and columns, respectively. A careful use of such a
pre-analysis is necessary in order not to pay for the increase of efficiency with the
loss of accuracy (by eliminating the "correct answer", i.e. due to the bad quality
of the underlying letter the right k-|mad finite array automaton wilt not even be
started). On the other hand, a neural network based on more complex features
represents a second useful tool for the correct clustering of tile given characters
and can be used in parallel with tile syntactic tool based on the k-head finite array

291

au toma ta . The improvement of each single component of the hybrid sys tem as well
as of the collaborat ion of the components remains for future research,

R e f e r e n c e s

1. M. Blmn and C. Hewitt, Automata on a tw()-dimensional tape. In: IEEE Symposium
on Switching and Automata Theory (1967), pp. 155-160.

2. C. R. Cook and P. S.-P. Wang, A Chomsky hierarchy of isotonic array grammars and
languages, Computer Graphics and Image PTvcessing 8 (1978), pp. 144-152.

3. J. D~sow and Gh. P~mn, Regulated Rewriting in Formal Language Thcary (Springer,
Berlin, 1989).

4. W. Dittmann, Character recognition by array systems of bounded index, Diploma
thesis, Techn. Univ. Wien, Austria, 1997.

5. H. Fernau and R. Freund, Boun(lcd parallelism in array grammars used for charac-
ter recognition. In: P. Perner, P. S.-P. Wang, and A. Rosenfeld (eds.), Proceedings
SSPR'96, LNCS 1121 (Springer, Berlin, 1996), Pt). 40-49,

6. H. Fernau, 12.. Freund, and M. IIolzcr, Regulated array grammars of finite index, Part
1. i 'heoretical investigations, to appear in: [13].

7. [I. Fernau, R. Freund, and M. [tolzer, Regulated array grammars of finite index, Part
II: Syntactic pattern recognition, to appear in: [13].

8. R. Freund, Array grammar systenls with prescribed teams of array productions. In:
J. Dassow, Gh. PAun and A. Salomaa (eds.), Developments in Language Theory II
(Gordon and Breach, London, 1996), pp. 220-229.

9. R. Freund, Syntactic recognition of handwritten characters by programmed array
grammars with attribute vectors, Seventh International Conference on Image Analysis
and Processing, Bari, Italy, in: Progress in Image Analysis and Processing llI (ed. S.
Impedovo, World Scientific Publ., Singapore, 1993), pp. 357 - 364.
O. Ibarra and It. T. Melson, Some results concerning automata on two-dimensional
tapes, International Journal of Computer Mathematics, Series A 4 (1974), pp. 269-
279.
K. Inoue and I. Takanami, A survey of two-dimensional automata theory. In: J. Das-
sow and J. Kelemen (eds.), Machines, Languages, and Complexity, IMYCS'88, LNCS
381 (Springer, Berlin, 1988), pp. 72-91.

12. A. Nakamura, Parallel Z-erasing array acceptors, Computer Graphics and Image Pro-
cessing 14 (1980), pp. 80-86.

13. Gh. P~un and A. Salomaa (eds.), Grammatical Models of Multi-Agent Systems (Gor-
don and Breach, Reading, UK, 1998).

14. A. L. Rosenberg, On multihead finite automata, IBM J. Res. Develop. 10 (1966), pp.
388-394.

15. A. Rosenfeld, Some notes on finite-staLe picture languages, Information and Control
31 (1976), pp. 177-184.

16. A. Rosenfeld, Picture Languages (Academic Press, Reading, MA, 1979).
17. J. H. Sossa, An improved parallel algorithm for thinning digital patterns, Pattern

Recognition Letters 10 (1989), pp. 77-80.
18. P. S.-P. Wang, Some new results on isotonic array grammars, Information Processing

Letters 10 (1980), pp. 129-131.
19. P. S.-P. Wang, An application of array grammars to clustering analysis for syntactic

patterns, Pattern Recognition 17, 4 (1984), pp. 441 - 451.

10.

11.

