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Abstract 
The Pseudo Fisher Linear Discriminant (PFLD) based on a pseudo-inverse technique shows a 
peaking behaviour of the generalization error for training sample sizes that are about the 
feature size: with an increase in the training sample size the generalization error at first 
decreases reaching the minimum, then increases reaching the maximum at the point where the 
training sample size is equal to the data dimensionality and afterwards begins again to 
decrease. A number of ways exist to solve this problem. In this paper it is shown that noise 
injection by adding redundant features to the data also helps to improve the generalization error 
of this classifier for critical training sample sizes. 

Keywords: Pseudo Fisher linear discriminant, critical sample size, generalization error, peaking 
behaviour, noise injection. 

1 Introduction 
The main problem in building statistical parametric classifiers on small training sets is 
that they require the inverse of the covariance matrix, which is impossible to perform 
when the number of training objects N is less than the data dimensionality p. One of 
the ways to overcome the small sample size problem is to modify the standard 
classifiers in one way or another. However, even modified classifiers, such as the 
Pseudo-Fisher linear discriminant (PFLD) [1], may become very unstable and have a 
peaking effect of the generalization error when the training sample size is comparable 
with the data dimensionality [2, 3, 4]. 

The following ways are studied to solve this problem: 
1. Removing features (decreasing p) by some feature selection method. 
2. Adding objects (increasing N), either by using larger training sets, or, if it is not pos- 

sible by generating additional objects (noise injection [5]). 
3. Removing objects (decreasing N) brings the classifier out of the instable region. This 

method has been studied by us [2, 3] and is effectively being used in the Support Vec- 
tor Classifier [13]. 

In this paper we will show that the fourth way is also effective: 
4. Adding redundant features (increasing p). Like the third method this brings the clas- 

sifier out of the instable region but now by enlarging the dimensionality by noise. 
In this paper we concentrate on the injection of noise by adding redundant features 

to the data and its effect on the performance of the Pseudo Fisher linear discriminant. 
The data used in our simulation study are presented in section 2. The Pseudo Fisher lin- 
ear discriminant is discussed in section 3. The use and the performance of noise injec- 
tion in the data feature space is considered in section 4. Conclusions and discussion 
could be found in section 5. 
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2 Data 

Two artificial data sets and one real data set are used for our experimental 
investigations. These data sets have a high dimension because we are interested in 
critical situations where the PFLD has a bad performance. 

The first set is a 30-dimensional correlated Gaussian data set constituted by two 
classes with equal covariance matrices. Each class consists of 500 vectors. The mean of 
the first class is zero for all features. The mean of the second class is equal to 3 for the 
first two features and equal to 0 for all other features. The common covariance matrix 
is a diagonal matrix with a variance of 40 for the second feature and a unit variance for 
all other features. The intrinsic class overlap (Bayes error) is 0.064. In order to spread 

the separability over all features, this data set is rotated using a 30 x 30 rotation matrix 

which is fl 11] for the first two features and the identity matrix for all other features. 

We call these data further "Gaussian correlated data". Its first two features are presented 

in Fig. 1. 

The second data set consists of two 30-dimensional Gaussian distributed data 
classes with unequal covariance matrices. Each data class contains 500 vectors. The first 
data class is distributed spherically with the unit covariance matrix and the zero mean. 
The mean of the second class is equal to 4.5 for the first feature and equal to 0 for all 
other features. The covariance matrix of the second class is a diagonal matrix with a var- 
iance of 3 for the first two features and a unit variance for all other features. We call 
these data further "Gaussian spherical data with unequal covariance matrices". Its first 
two features are presented in Fig. 2. 
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Fig. 1. Scatter plot of a two-dimensional projection of the 30-dimensional Gaussian 
correlated data. 
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Fig. 2. Scatter plot of a two-dimensional projection of the 30-dimensional Gaussian spherical 
data with unequal covariance matrices. 

The last data set consists of real data collected through spot counting in interphase 

cell nuclei (see, for instance, Netten et al [6] and Hoekstra et al [7]). Spot counting is a 
technique to detect numerical chromosome abnormalities. By counting the number of 
coloured chromosomes ('spots'), it is possible to detect whether the cell has an aberra- 
tion that indicates a serious disease. A FISH (Fluorescence In Situ Hybridization) spec- 
imen of cell nuclei was scanned using a fluorescence microscope system, resulting in 

computer images of the single cell nuclei. From these single cell images 16 x 16 pixel 

regions of interest were selected. These regions contain either background spots (noise), 
single spots or touching spots. From these regions we constructed two classes of data: 
the noisy background and single spots, omitting the regions with touching spots. The 

samples of size 16 x 16 were considered as a feature vector of size 256. The first class 

of data (the noisy background) consists of 575 256-dimensional vectors and the second 
class (single spots) - of 571 256-dimensional vectors. We call these data "cell data" in 
the experiments. 

Training data sets with 3 to 200 (with 3 to 300 for cell data) samples per class are 
chosen randomly from a total set. The remaining data are used for testing. These and all 
other experiments are repeated 10 times for independent training sample sets. In all fig- 
ures the averaged results over 10 repetitions are presented and we do not mention that 
further. 

3 The Pseudo Fisher Linear Discriminant 

The most popular and commonly used linear classifier is the Fisher Linear 
Discriminant (FLD) [8, 9]: 
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g F ( X ) =  IX_ ~(~'O) + X(2))I'S-I(~'(I)_x(2) ), (1) 

where S is the standard maximum likelihood estimation of the p x p common covari- 

ance matrix £, x is a p-variate vector to be classified and 7-Y (i) is the sample mean vector 
of the i-th class, i=1,2. 

Notice that (1) is the mean squared error solution for the linear coefficients (W,Wo) 

in 

gF(X) = W . X + W o = L (2) 

with x e X and with L being the corresponding desired outcomes, I for class- 1 and - 

1 for class-2. When the number of data features p exceeds the total number of training 
vectors N, the estimate matrix S becomes singular and the direct inverse becomes im- 
possible [ 10]. For increasing feature sizes the expected probability of misclassification 
rises dramatically [I 1]. 

The modification of the FLD, which allows to avoid the inverse of ill-conditioned 
covariance matrix, is the so-called Pseudo Fisher linear discriminant [1]. In the PFLD a 
direct solution of (2) is obtained by (using augmented vectors): 

gee (X)  = (w, Wo) • (x, 1) = (x, 1)(X, I ) - IL,  (3) 

where (x, 1) is the augmented vector to be classified and (X,/) is the augmented training 

set. The inverse (X,/) q is the Moore-Penrose Pseudo Inverse which gives the minimum 
norm solution. Before the inversion the data are shifted such that they have zero mean. 
This method is closely related to singular value decomposition. 

For values N > p the PFLD, maximizing the distance to all given samples, is 

equivalent to the FLD (1). For values N < p ,  however, the Pseudo Fisher rule finds a 
linear subspace, which covers all the data samples. On this plane the PFLD estimates 
the data means and the covariance matrix, and builds a linear discriminant perpendicu- 
lar to this subspace in all other directions for which no samples are given. 

The behaviour of the PFLD as a function of the sample size is illustrated in [2, 4]. 
For one sample per class this method is equivalent to the Nearest Mean and to the Near- 
est Neighbour method. If the total sample size is equal to or larger than the dimension- 

ality N > p,  the method is equivalent to the FLD. It was noticed that the generalization 

error of the PFLD shows a peaking behaviour: with an increase in the training sample 
size the generalization error at first decreases reaching a local minimum somewhere be- 
low the point N=p, then increases reaching a maximum at the point N=p, where the 
training sample size is equal to the data dimensionality, and afterwards begins again to 
decrease (e.g., Fig. 3). This can be understood from the observation that the PFLD suc- 
ceeds in finding hyperplanes with equal distances to all training samples until N=p. In 
[12] an asymptotic expression for the generalization error of the PFLD is derived which 
explains theoretically the such behaviour of the PFLD. 
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4 Noise Injection by Adding Redundant Features to the Data 

In order to improve the generalization error of the PFLD for critical values of the 
training sample size (N=p), the number of techniques could be used. 

One of the ways to solve this problem involves generating more training objects 
by noise injection to the training data. Usually, spherical Gaussian distributed noise is 
generated around each training object. However, this method requires to know the op- 
timal variance of noise in order to get good results. The optimal value of the noise var- 
iance depends on many factors such as the training sample size, the data dimensionality 
and the data distribution [5]. It could vary dramatically for different data. As a rule, to 
find the optimal value of the noise variance is not an easy task and it goes on a long time. 

To demonstrate the influence of the noise variance 3~ on the generalization error of 
the PFLD we considered the 30-dimensional Gaussian correlated data. The averaged re- 
sults for some values of X are presented in Fig. 3. We see that the performance of the 
PFLD strongly depends on the variance of the noise. 

Considering small sample size properties (a learning curve) of the PFLD, one can 
reach another solution: decrease the number of training objects in order to avoid the crit- 
ical training sample size problem. It could be also performed by noise injection in the 
data feature space instead of adding noise to the training objects. In this case the data 
dimensionality is enlarged by adding Gaussian distributed features with zero mean and 
variance of one. When increasing the data dimensionality p the training sample size N 
relatively decreases leaving a critical area N=p, where the PFLD has a high generaliza- 

tion error. For values N < p the PFLD performs much better than for the critical sizes 

of the training set. 
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Fig. 3. The generalization error of the PFLD without and with noise injection to the training 
objects with different values of the noise variance X=L versus the training sample size for 30- 
dimensional Gaussian correlated data. 
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Let us now investigate this approach for 3 examples of data described in section 
2. In order to study the influence of injection of "noisy" features to the data, the addi- 
tional redundant "noisy" features having Gaussian distribution with zero mean and var- 
iance of one were generated. The generalization error of the PFLD for 30-dimensional 
Gaussian correlated data and 30-dimensional Gaussian spherical data with unequal co- 
variance matrices without noise injection in the feature space and with 20, 70 and 170 
additional redundant "noisy" features is presented in Fig. 4 and Fig. 5, respectively. The 
generalization error of the PFLD obtained on cell data without noise injection in the fea- 
ture space and on the cell data with 44, 100, 144 and 200 redundant "noisy" features is 
presented in Fig. 6. 

For all data the PFLD shows a critical behaviour with a high maximum of the gen- 
eralization error around critical training sample size N=p. Figures 4, 5 and 6 nicely 
demonstrate that noise injection in the data feature space helps to avoid the peaking ef- 
fect of the generalization error of the PFLD. We see that redoubling of the data dimen- 
sionality by adding "noisy" features already twice improves the performance of the 
classifier at the point N=p. For cell data it was enough to add 44-100 "noisy" features 
for the same improvement. When the number of added "noisy" features was 4-5 times 
larger than the original dimensionality of the data, the peak of the generalization error 
was smoothed almost completely: the generalization error was reduced in a whole re- 
gion around the critical training sample size. Adding redundant features is useless, how- 
ever, for very small training sample sets. Adding noise to a highly dimensional feature 
space with only a few objects makes the training data set too "noisy" to represent the 
entire data set correctly. In this case it becomes difficult or even impossible to build a 
good discriminant function. All considered data nicely demonstrate that the more noise 
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Fig. 4. The generalization error of the PFLD versus the training sample size for Gaussian 
correlated data without noise injection in the feature space (p=30) and with 20, 70, 170 
additional redundant features (p=50, 100, 200). 
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Fig. 5, The generalization error of the PFLD versus the training sample size for Gaussian 
spherical data with unequal covariance matrices without noise injection in the feature space 
(p=30) and with 20, 70, 170 additional redundant "noisy" features (p=50, 100, 200). 
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Fig. 6. The generalization error of the PFLD versus the training sample size for 256- 
dimensional celt data without noise injection (p=256) and with 44, 100, 144 and 200 additional 
redundant "noisy" features (p=300, 356,400, 456). 
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is added to the data by adding redundant features the larger generalization error is ob- 
tained in the case of very small training sample sizes. For critical training data sizes add- 
ing redundant features helps to avoid the peaking effect of the generalization error of 
the PFLD. 

However, one can notice that the improvement obtained in the generalization error 
also depends on the number of additional "noisy" features used for each data set. Obvi- 
ously, this question requires to be investigated in future. Nevertheless, our simulation 
study completely proved the possible usefulness of noise injection in the data feature 
space in order to reduce the generalization error of the PFLD for critical training sample 
sizes. 

5 Conclusions and Discussion 

The PFLD might have a peaking behaviour of the generalization error for training 
sample sizes that are about the feature size. Based on the small sample size properties 
of the PFLD in this paper it was suggested to inject noise to the data feature space in 
order to improve the generalization error of the PFLD for critical training sample sizes. 
This approach was studied for two artificial data sets and one example of real data. 
Simulation results have shown that adding redundant "noisy" features to the data 
allows to reduce dramatically the generalization error of the PFLD in the region of 
critical training sample sizes. 

Finally we make the following suggestion for future research. It has been ob- 
served previously [5] that the use of artificially generated normally distributed data is 
equivalent to regularizing the covariance matrix (Z + L/) in case of the FLD. A similar 
type of regularization, but now on the inner product matrix (X'X + M) might be equiv- 
alent to the stabilizing of the PFLD by the generation of redundant features discussed 
in this paper. This demands for a more thorough mathematical analysis than possible in 
this paper. 
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