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Abstract- Structurization of the covatiance matrices helps to reduce a number of parameters 
to be eslimaled. I[Taen assumptions on the so~wture of the matrix are correct the 
structurization of the covariance matrix helps to reduce the generalization error in small 
lemming-set cases. I~fficacv of the matrix sttTwturization increases if one decmwelates and 
scales the data, and uses the optimally Stol~ped shsgle layer perceptron classifier afterwards. 

Index terms: regularized diseriminant analysis, learning-set size, generalization, 
dimensionality, covariance matrix, parameters reduction, single layer perceptron. 

I. Introduction. 

An essential factor while designing any pattern recognition system is a 
learning-set size / dimensionality ratio. In a standard linear and quadratic 
discrimianant analysis, one needs to estimate populations covariance matrices and 
invert them. When p, the dimensionality of the feature vector, exceeds n, the number 
of observations used to estimate the covariance matrix S, this matrix becomes 
singular and one can not invert it. Similar problem arise when n is close to p. 

There is a number of ways to overcome this kind of difficulties (see e.g. 
Raudys, 1991). We'll categorise these techniques into following three groups: 

a) dimensionality reduction by feature extraction or feature selection, 
b) regularization of the sample covariance matrix. The simplest and the most 

popular example is a use of the shrinkage (ridge) estimate 
S~^=S+LI, (1) 

where S is the conventional maxinmm likelihood estimate of the covariance matrix 
E, I is a pxp identity matrix and L is a positive regularizalion constant (Friedman, 
! 989, McLachlan, 1992), 

c) struclurization of a true covariance matrix E, and its descriplion by a small 
number of  parameters. Examples are assumption that I: is a diagonal matrix, it has a 
block structure, E is a Toeplitz matrix of general form, E is circular, :E describes an 
autoregression process, e.t.c. 

From theoretical studies it is known small sample properties of the statistical 
pattern classifiers depend on a number of parameters r used to characterise the 
covariance matrix. When the number of parameters r is proportional to 
dimensionality p, asymplolically for large n ,  r and p, estimation of lhe common for 
both pattern classes covariance matrix (CM) E does not affect the increase in Ihe 
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generalization error (Randys, 1972, Dee,,', 1974, Meshalkin & Serdobolskij, 1978, see 
also Raudys & Pikelis, 1980; Raudys & Jain, 1991). It means, for large n, r and p, 
one can expect high efficacy of stntcturization of the covariance matrix. 

In this paper we'll analyse the third group of teclmiques more thoroughly. We 
consider several popular and unpopular slnlcturcs of CM discussed in Raudys (1991) 
and show that when assumptions on the structure of the matrix are correct the 
slmclurizalion of CM helps to reduce the generalization error in small Icaming-sel 
cases. Efficacy of the matrix stnicturization increases if one uses Ihe information 
about the structure in order to decorrelale and normalise the data, and uses Ihe 
optimaUy stopped single layer perceptrou classifier aflenvards. 

Notations and abbreviations: 

N - number of learning vectors in one class, p - number of the features 
(dimensionality), 

RDA - regularized discriminant analysis, LDA - linear discriminant analysis, 
EDC - Euclidean distance classifier, AR - anloregression model, 
OFS - original feature space, TFS - transformed feature space, 
SLP - single layer perceptron, CM - covariance matrix, 

2. Structures  o f  the covar iance  matrix.  

Use of the Gaussian model to describe tile distribution density of the pattern 
classes leads to the quadratic discriminant function. In two ealegoo' case, one needs 
to estimate two p-variate mean vectors and two pxp covariance matrices, aitogclher 
2p+p(p+l) parameters. An assumption that the pattern classes share the commou CM 
X leads to the standard Fisher linear discriminant function (DF) with smaller 
number of parameters to be estimated from the learning-set 

g(x )= (x- 1 (3  0)+~(2~))'Sl (~-0).~2))), (2) 

where 

o), i(2) are sample means, 
S is the sample estimate of the covariance matrix, and 
x = (x~ ... . .  xp)' is a p-variate vector to be classified. 

When one assumes that the features are independent, instead of S one uses a 
diagonal variance matrix D composed from diagonal elements of S. In certain 
applications, the features can be grouped into blocks of the features, and one of 
possible ways to reduce the number of parameters is to assume that the blocks are 
statistically independent. In the high dimensional cases, the number of parameters 
required to characterise CM 
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is reduced immensely. 

An interesting and useful model which requires a small number of parameters 
to describe a joint dependence between all p variables is a model based on an 
approximation of a joint probabilily distribution by the first order O'ee depemtence 

f ix , ,  x z .... , x )  = /(xt) f l x  2 I x,) J(x 3 Ix 2. x,)...flx v Ix., ..... x v x,). (4) 

In this model, it is assumed that cach variable is conditioned upon, at most. 
one anoHIcr variable. Then probability density fimction (4) can be wrillen in thc 
following form: 

f ix, ,  x 2 . . . . .  x )  = I~I  f (  xj t Xm. t ) (0< m.i < p) (5) 
j=l 

where a sequence m z . . . . .  mp constitutes a graph of connections (an unknown 

permutation of the integers 1, 2 ..... p) and f ix  i I Xo), by definition is equal to flxi). In 

a general case, the covariance matrix have p ,  p non-zero elements. An inverse of this 

matrix y4 which has to be used to design the classifier, however, has only 2p 
different non-zero elements. It is a result of the assumption that each component of 
the vector x depends only on one another component. This important model lacked to 
be described in all pattern recognition textbooks and remained practically unnoticed 
in pattern recognition community. 

There is a number of models that allow to evaluate temporal or spatial 
dependence between the data points. The recognition of the temporal and spatial 
objects and phenomena requires to work with vectors of very high dimensionality. It 
is an advantageous area of application of the constrained statistical classifiers. 
Therefore an expertise gained in this knowledge area probably can be useful in ANN 
design. 

Let the components xl, x 2 . . . . .  xp.i, xp of the multivariate vector x are 

measoremenls differing in time or in space, and assume they are slalionary random 
process. Then the covariance matrix has Toeplitz slructme. Only p parameters (t~t, 

82 ..... ~ ) describe the structure of dependence between the variables. A number of 

special models, such as circular, autoregression, moving average, ARMA, and 
others, allow to reduce the number of parameters even more. In the circular model. 
we have a symmetry: ~i2= ~ ,  ~5.~= ~4,  84= ~.v e.t.c.. This model is competent to 
estimate random periodical processes. A number of parameters q in the aulorgression 
nmdei, depends of the model's order, and typically q<<p. 
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3 .  S i m u l a t i o n  e x p e r i m e n t s .  

The elficacy of strueturization of the covariance matrix was performed by 
means of simulation. In the experiments, we estimated parameters of different 
modifications of the linear discriminant function by using different randomly chosen 
learning-sets and estimated the gencraliTation error on a large test-set (for a real 
world data) or calculated it analytically (for an artificial Gaussian data). Two 
category case was analysed. 

Following linear classifiers were analysed in this section: 
- RDA - the standard linear regularized discriminant analysis (RDA) with the 

optimal L evaluated from 50 estimates of the generalization error, 
- the standard linear Fisher classifier (when n <p, we used a pscudoinverse 

of the covariance matrix), 
- EDC - the Euclidean distance classifier, where it is assumed Z=~ 2 I, 
- Tree - LDA with the tree type dependence slnlclured cowlriance matrix, 
- Toep - LDA with the Toeplilz structured covariance matrix. 
- C i r c  - LDA with the circular struclured covariance matrix, 
- AR! - LDA with the first order autoregression structured covariance matrix, 
- AR4 - LDA with the fourth order autoregression stntctured covariance matrix. 

We concentrated our analysis mainly on a ease when tile number of learning 
examples n= Nt+N2 = 2N is smaller than the number of dimensions p of the feature 
vector. Therefore in our investigation, we used 40-variate artificial Gaussian data 
similar to two 40-variale Friedman (1989) Gaussian data sets used in analysis of the 
linear RDA where the first or last features were most informative. In our analysis we 
used also eleven 40-variate Gaussian data sets where various types of assumptions on 
the stnlcture of the covariance matrices were fulfilled. 

In addition to 13 artificial data types, in our research, we also usedfive real 
worm data sets. In 28-variate (spectral and cepstral features) vowels data, we had 400 
vowels in one class pronounced by 20 speakers, and in 66-variate (spectral and 
ccpstral fealures) lung noise data, we had 180 vectors measured on 18 palienls in one 
class. 65-variate (shape, size, histogram slatistics, Gabor wavelet response, etc.) 
mammogram data set consists of 57 belting and 29 malignant mammograms, and 60- 
variate (energy within a particular frequency over a certain period of time) sonar data 
set represents two classes that describe sonar signals bounced off a metal cylinder and 
those bounced off a cylindrical rock (111 and 97 patterns, respectively). Two class 
33-variate ionosphere data set contains 127 and 226 patterns. While training the 
classifiers, we have chosen N vectors from each class randomly, and tested the 
classifiers on all vectors. Asymptotic error rates obtained by using different 
structurizaliou methods are summarized in Table 1. 

In all experiments with artificial Gaussiau data we have chosen Nt=N2 = 
N=13, tile same dimensionality/sample size ratio as in the Friedman's experiments 
with Ihe LDA. All experiments were performed 25 times with each size of the 
learning-set. 
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Table 1. Asymptotic error rates of tile data. 

No Model l)ata LI)A Circ Toepl Tree AR1 AR4 
1 Circ. ! C30 0,03 0,03 0,03 0,05 0,28 0,21 
2 Circ. 2 C!5 0,03 0,03 0,03 0,05 0,19 0,14 
3 Circ. 3 C05 0,03 0,03 0,03 0,04 0,06 0,05 
4 Toepl I TI 105 0,03 0,05 0,03 0,04 0,06 0,05 
5 Toepl 2 TI054 0,03 0,05 0,03 0,04 0,04 0,04 
6 Toepl 3 T31010 0,03 0,04 0,03 0,03 0,03 0,03 
7 "Free 1 Treel 0,03 0,09 0,09 0,03 0,06 0,09 
8 Tree 2 Tree2 0,03 0,28 0,29 0,03 0,15 0,28 
9 Tree 3 Tree3 0,03 0,10 0, I 0 0,03 0,07 0,10 
10 AR i AR046 0,03 0,03 0,03 0,03 0,03 0,03 
I I AR 4 AR034 0,03 0,04 0,03 0,03 0,07 0,03 
12 Fried f FLM f 0,03 0,10 0,10 0,09 0,30 0,10 
13 Fried I F~M ! 0,03 0,04 0,04 0,04 0,30 0,04 
14 Wowel Wovels 0,01 0,06 0.05 0,05 0.06 0,07 
15 Lung Lung 0,05 0,23 0,23 0,26 0,29 0,30 
16 Mature. Mamm. 0.01 0.01 0.01 0.01 0.01 0.01 
17 Sonar Sonar 0 . 0 8 7  0.164 0.149 0.221 0.188 0.173 
18 lonosph Ionosph 0.103 0.145 0108 0.137 0 . 1 7 7  0.145 

Results are presented in Table 2. In the first column, we present the code of 
the data and N, the learning set size (for the real world data). In the second one, we 
present mean values of the generalization error of the standard RDA with optimal 
value of g. in following columns, we present relative eficacies of different classifiers: 
the generalization error of our bench-mark method - the standard RDA divided by 
the generalization error of the classifier under consideration in this column: 

RDA t la I l i f i~r  
y = P, /r'. . Gamma (1,) values are presented in bold for these Gaussian models 
where assumptions of the covariance matrices structure are correct. 

From the simulation experiments we see the RDA always outperform the 
standard methods: the Fisher LDA and EDC. When assumptions on the structure of 
the matrix are correct the structurization of tile covariance matrix often helps to 
reduce the generalization error in small learning-set cases. Ill some cases, the gain 
can be very high. E.g. for dala AR034 we obtained a gain - 4.59 lin|es on average for 
25 randomly chosen learning sels. For some configuralions of the dala and learning- 
set sizes, even for cases when the poslulated dependence model was correct, the 
struclurizalion resulted no gain in comparison with the reguh|rized discriminant 
analysis. Examples are all Gaussian data sets generated according the Toeplitz 
model. For these three data models even simple EDC performed better than the linear 
DF with the structured covariance matrix. 

Structurization by the first order tree dependence, the Toeplitc, AR and 
circular models resulted no gain while applied to all real data sets. For the lung data 
the representation of 66x66 covariance matrix in a block form (3) composed from six 
1 lxl I blocks in Ihe diagonal resulted the asymptotic error O. 13, and helped Io obtain 
a certain gain: in 25 experiments wilh learning sets of size N=22 the 
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generalization error was decreased !.20 times (EPn Ro^ = 0.24), for N = 33 - 1.31 
times (EI'n rD^ = 0.23), however for N=132, y = 0.52 (EPnrr~^ = 0.07). 

Table 2. The mean generalization error El ' ,  Rr'' of the standard linear RDA and the 
ILDA cluliller 

relative efficacies 7 = P ,  /P,  of the Fisher classifier, EDC, and LDA with use 
of different slntclured covariance matrices. 

Classif. EPRDA TEuclid TF&Circ yF&Tp yF&Tree TF&AR 1 TF&AR4 yFisher 
Melhod 
Data 

C30 0,12 0,43 1,95 0,55 0,69 0,43 0,43 0,63 
C 15 0,11 0,62 1,76 0,75 0,8 0,62 0,62 0,70 
C05 0,05 0,95 0,92 0,72 0,73 0,87 0,81 0,43 

T I 105 (I,05 0,9 0,59 0,67 0,81 0,89 0,83 0,4 I 
T1054 0,05 0,96 0,6 0,69 0,67 0,83 0,45 0,38 
"1"31010 0,04 (t,98 0,55 11,55 (1,51 0,71 0,56 0,32 
Tree I 0,15 0,72 0,91 0,88 I, ! 0,76 (I,92 0,58 
Tree2 0,2 0,77 0,95 0,92 1,6 0,74 1,00 0,58 
Tree3 0,3 0,62 0,67 0,67 1,23 0,62 0,64 0,75 
AR046 0,16 0,76 2,26 2,15 1,15 2,65 2,9 0,55 
AR034 0,26 0,60 3,08 3,70 ! ,02 0,63 4,59 0,62 
FLM f 0,21 0,84 0,83 0,83 1,03 0,84 0,86 0,67 
FLM 1 0,05 0,99 0,97 0,91 0,67 0,99 0,99 0,31 
Wov.9 0,08 0,70 0,90 0,99 0,91 0,74 0,62 0,49 

Wov. 14 0,07 0,7 0,89 0,83 0,82 0,77 0,65 0,27 
Wov.56 0,03 0,35 0,44 0,53 0,48 0,39 0,35 0,63 
Ma 10 0,18 0,55 0,65 0,63 0,97 0,61 0,62 0,66 
Ma 20 0,09 0,37 0,42 0,43 0,84 0,39 0,41 0,54 
Ma 25 0,07 0,26 0,32 0,33 0,69 0,32 0,32 0,51 
Son20 0,22 0,70 0,80 0,74 0,83 0,80 0,78 0,8 
Son 30 O, 19 0,68 0,79 0,74 0,76 0,77 0,76 0,65 
Son 80 0,1 i 0,41 0,66 0,65 0,55 0,60 0,58 0,92 
Ionol I 0,16 0,72 0,86 0,74 0,88 0,78 0,89 0,64 
Ionol 6 0,14 0,67 0,79 0,73 0,82 0,72 0,81 0,52 
Iono66 0,10 0,57 0,75 0,91 0,79 0,60 0,76 0,90 

4. Data transformations and the single layer perceptron. 

Recently it became known, that alter the first total gradient training iteration 
of the single layer perceptron (SLP), one can obtain the Euclidean distance classifier 
and move further towards RDA and the standard Fisher linear DF if certain 
conditions are satisfied (the centre of the data is moved to the zero point, for N2=N~ 

one uses symmetrical targets for both pattern classes, starts training from zero 
weights, and uses the total gradient training). Thus, if the training is successful and 
one succeeds to slop training optimally, one can obtain the oplimal RDA by using 
this iterative numerical method. In fimher training, the SLP classifier can move 
towards the minimum empirical error and the support vector (maximum nmrgin) 
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classifiers (Raudys, 1996, 1998). Therefore, if tile data differs from Gaussian with 
common covariance matrix then, in principle, in fimher training one can expect to 
obtain smaller generalizalion error. 

lterative training of the single layer perceptron becomes difficult when 
variances of the data are different in various directions; it means when eigenvalues of 
the covariance matrix Z are essentially different. We can try to equalise the variances 
by transforming the data by means of rotation and scaling: y = 1)~/:T'x, where 11 and 
T are p x p diagonal eigenvalue and p x p eigenvectors matrix of the sample 
covariance matrix S. Then sample covariance matrix S r of the vector y will be the 
identity matrix. After the first learning iteration we obtain tile discrimianant fimction 

g(y)= (y.~_(y 0)+~(2))), (y0).y(2)))kl,. = (x- (~0)+i-(2)))'S-t (i '0)-~2)))k~, (6) 

where y(~) = D-~/:T, i-0), y(2) = l)-W/2T, i-(2), and kl~ is a constant. 

it means, after lhe training in tile y space, afler lhe first iteration we obtain 
the classifier that is equivalent to the Euclidean distance classifier in the transformed 
(y) space (TFS), and the standard linear Fisher DF in the original (x) feature space. 
Let now transform the data by means of the matrix Gw^ = (D+ZI)-t/:T: y = G~^x. 
Then after the first iteration we obtain the classifier that is equivalent to RDA 
analysis in the x space. When we transform the data by means of matrix GT~E = 
Dm~'~/2TrRF~': y = G ~ x ,  then after the first iteration we obtain the classifier that is 
equivalent to the LDA with tree stnmlured covariance matrix in the original feature 
space (OFS). In above equation, Dr~m and TrR~ are are p x p diagonal eigenvalue 
and p x p eigenveclors matrix of the tree structurized estimate of the covariance 
matrix. The same considerations are valid for other stnlcturization methods. When 
the data is Gaussian with the common for all classes covariance matrix, and the 
postulated feature dependence model is correct, then there is a small chance to reduce 
the generalization error in further training. For a non-Gaussian data, models with 
different CM in both pattern classes, and cases when one postulates the structure of 
CM incorrectly, however, an additional use of SLP can result a certain success. 

Therefore, in a second part of our experimental work, we tested the nonlinear 

SLP. In simulation experiments we translated the learning data centre 0.5(2 (% i (2)) 
into the zero point, initialised the SLP with the zero weight vector, used the sigmoid 
activation function and trained the perceplron in a batch-mode with a standard back 
propagation algorithm using targets 0 and 1. Ill experiments with small learning sets, 
in order to obtain a large margin quickly, we increased the learning step r 1 
progressively with each iteration number t: rt--0.2* 1.03t; tm~ = 500. We trained the 
SLP in the original (x) space and afterwards in the transformed space (y = Tx). In 
each experiment, we determined an optimal stopping moment top~ from estimates of 
the generalization error obtained either from the test-set data (for the real world data) 
or calculated analytically (for Gaussian data). Results are presented in Table 3. 
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Table 3. The mean generalization error EP,  ~^  of the slandard linear RDA and the 
) RDA ) eb,..iflel" 

relative eficacies y = I .  / I .  of the SLP classifier without and after Ihe dala 
lransformalion performed by use of differenlly slruclured covariance nmlrices. 

Class. y SLP ), SLP )' SLP "t SLP Y SLP T SLP y SLP 
Method EP ~°^ in OFS in TFS in TF8 in TFS in "ITS in TFS in TFS 
Data by Tcire by TTop by TTree by TARI by TAR4 by TeoBv 

C30 0,12 0,9 1,97 0,78 1,08 0,5 0,49 0,38 
C 15 0,11 0,91 1,77 0,98 0,88 0,67 0,66 0,36 
C05 0,05 0,99 0,92 0,74 0,78 0,87 0,82 0,2 

T1105 0,05 !,00 0,64 0,71 0,89 0,94 0,85 0,19 
T1054 0,05 1,00 0,62 0,7 0,65 0,84 0,48 0,16 

"1"31010 0,04 1,00 0,56 0,56 0,62 0,72 0,57 0,14 
Treel 0,15 1,00 1,13 1,09 1,21 1,115 1,18 0,47 
Tree2 0,2 0,98 1,12 1,08 1,68 0,95 1,18 11,57 
Tree3 0,3 0,94 1,07 0,99 1,54 0,9 1,09 0,78 

AR046 0,16 1,110 2,29 2,17 t,22 2,67 2,92 0,45 
AR034 0,26 0,89 3,45 3,84 1,23 1,05 4,62 0,67 
FLM f 0,21 0,96 0,96 0,96 1,09 0,97 0,98 0,63 
FT~ M 1 0,05 1,01 0,98 0,92 0,69 1,00 1,00 0,21 
Wov.9 0,08 0,97 1,09 1,19 0,99 0,91 0,8 0,32 

Wov. 14 0,07 1,06 1,08 1,05 0,99 0,97 0,88 0,2 
Wov.56 0,03 1,05 1,12 1,1 1,08 1,03 1,05 0,84 
Ma 10 0,18 0,98 1,02 0,96 |,2 0,96 0,98 0,71 
Ma 20 0,09 1,02 1,11 1,02 !,64 1,07 1,04 0,47 
Ma 25 0,07 1,19 1,44 1,33 1,41 1,54 1,38 0,43 
Son20 0,22 !,08 0,98 0,96 0,96 0,99 0,99 0,66 
Son 30 0,19 I,I1 1,03 1,03 0,99 1,04 1,04 0,61 
Son 80 0,11 1,45 1,98 1,93 1,93 1,93 1,94 1,89 
lonol I 0,16 1,00 1,01 0,99 0,96 1,05 1,13 0,54 
Ionol6 0,14 1,05 1,01 0,97 0,94 1,06 1,1 0,48 
Iono66 0,1 1,31 1,35 1,32 1,36 1,29 1,33 1,23 

In the Table we have the average resulls. The results advocate, the efficacy of the 
optimally stopped SLP in OFS is ahnost the same as that of the RDA. Higher wdues 
of the generalization error of the SLP typically were associated with these few cases 
when 500 iterations were not sufficient Io train Ihe perceplron. II is worth 1o nole 
Itl;11 afler the transformation y = Tx, we oblained a significanl increase in the 
learning speed: typically only few training ileralions were sufficienl 1o oblain lhe 
smallest generalization error. 

Practically in all experiments, the transformations of the dala according the 
structured estimate of the sample CM and subsequent use of the optinmlly stopped 
SLP helped to improve efficacy of the covariance matrix structurization, E.g. for the 
Gaussian data C30 the additional use of the data transformation based circular model 
and SLP helped to reduce the generalization error 1.97 times in comparison with the 
best statistical method - RDA. For some models additional use of SLP leads to a 
significant gain: e.g. with tree type dependence model we had athe gain YFree=1.23, 
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and now 3'r~o~sr.p = 1.56. For Toeplilz model, however, possibly, we have chosen too 
"difficull" nlodel and estinlaled nlodel's paranlelers inefficienlly and did !1ot 
obtained any gain: e.g. ~,~.o~p = I).67, and 7 SLP in TS by T/oep l i t c  = 0.71, however 
for olher syntelic data (AR034) the Toeplilz model slnlcturizalion resulted a 
significant gain: ~, SLP in TFS by Txo~pli~ = 3.84. 

Similar observations we have for the real world data too. For the wovels data 
and learning-set sizes 9, 14 and 56 for the Toeplitz model we have had 
YLDA&Toep = 0.99, 0.83, and 0.53, i.e. no improvement in comparison with RDA. 

Now, with tile data transformations and subsequent SLP training, we have 7 SLP in 

TS by T.roop,~o = 1.19, 1.05, and 1.10. For the hmg data and learuing-set sizes 22, 33 

and 132 for tile block matrix model we have had ~'F&Toep = !.20, 1.31 and 0.52. 

After the transformations and SLP we have ~, SLP in TS by T'roeplit¢ = 1.36, 1.62, 

and 2.05, i.e., an obvious improvement. 

5. C o n c l u d i n g  remarks.  

The efficacy of the structurization of the eovariance matrix depends both on 
the data as well as on peculiarities of the particular learning-set. In a part of the 
experiments, we obtained no or very insignificant gain, 

In our comparative experiments, we used optimal values of L for tile standard 
RDA estimated from the lesl-sel, or analytically for tile Gaussian palleru classes. 
Therefore our experimenls resull optimislic eslimales of the efficacy of the 
regularized discriminant analysis and pessimistic estimates of our efficacy 

RDA clas-~ifier 
coefficients ~[ = P,  /P,  Nevertheless, we see that for certain Gaussian 
models use of correct assumptions on the structure covariance matrix result an 
obvious gain. In most cases, structurization outperform the standard linear 
discriminant analysis, and in some cases, it loses against the regularized 
discriminant analysis. Therefore in practical applications, one obligatory must use an 
additional validation-set in order to decide which classification method to use. In 
extremely high-dimensional cases, however, one can expect these paramelers can be 
estimaled by Ihe leaving-one out or rolalion methods. The sitnalion is analogous to 
RDA where we have to choose the optimal value of the regularization parameter L. 

Our experiments with the aflificial and real world data sets have demonstrated 
that lhe efficacy of the matrix structurization increases if one uses the information 
about the structure in order to decorrelate and scale the data, and uses the optimally 
stopped single layer perceptron classifier afterwards. It is a new way to incorporate 
an additional the statistical information in the perceptron training process. We see, 
that it is useful to structurize the covariance matrix. More statistical models and 
more real world data sets should be analysed in future research work. Special 
numerical calculation schemes that speed up the calculations in the model validation 
stage should be developed. 

In present paper we analysed the efficacy of tile slructurization of the 
covariance matrix and the joint use of the data transformation and the SLP in the 
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linear discriminant analysis problem only. No doubt, this structurizalion of the 
sample covariance nmlrix can be used in pallern classificalion wilh different 
cow, fiance matrices as well as ill regression tasks. 
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