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Abstract - Structurization of the covariance matrices helps to reduce a number of parameters
to be estimated. When assumptions on the structure of the matrix are correct the
structurization of the covariance matrix helps to veduce the generalization ervor in small
leaming-set cases. Efficacy of the matrix structurization increases if one decorrelates and
scales the data, and uses the optimally stopped single layer perceptron classifier afterwards.

Index terms: regularized discriminant analysis, learning-sel size, generalization,
dimensionality, covariance matrix, parameters reduction, single layer perceptron.

1. Introduction.

An essential factor while designing any patiern recognition system is a
lcarning-set size / dimensionality ratio. In a standard lincar and quadratic
discrimianant analysis, onc needs to estimate populations covariance matrices and
invert them. When p, the dimensionality of the feature vector, exceeds n, the number
of obscrvations uscd to cstimate the covariance matrix S, this matrix becomes
singular and one can not invert it. Similar problem arise when » is close to p.

There is a number of ways to overcome this kind of difficulties (sce c.g.
Raudys, 1991). We’ll categorise these techniques into following three groups:

a) dimensionality reduction by feature extraction or feature selection,

b) regularization of the sample covariance matrix. The simplest and the most
popular example is a use of the shrinkage (ridge) cstimate

SRPA=G 4L, )
where S is the conventional maximum likelihood estimate of the covariance matrix
Z, Lis a pxp identity matrix and A is a positive regularization constant (Fricdman,
1989, McLachlan, 1992),

¢) structurization of a truc covariance matrix I, and its description by a small
numbcer of parameters. Examples are assumption that T is a diagonal matrix, it has a
block structure, X is a Toeplitz matrix of general form, ¥ is circular, T describes an
autoregression process, €.t.c.

From theoretical studies it is known small sample properties of the statistical
pattern classifiers depend on a number of parameters » used to characterise the
covariance matrix. When the number of parameters » is proportional to
dimensionality p, asymptotically for large n , r and p, cstimation of the common for
both pattern classes covariance matrix (CM) £ does not affect the increasc in the
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generalization error (Raudys, 1972, Deev, 1974, Meshalkin & Serdobolskij, 1978, see
also Raudys & Pikelis, 1980; Raudys & Jain, 1991). It means, for large n, r and p,
one can expect high efficacy of structurization of the covariance matrix .

In this paper we’ll analyse the third group of techniques more thoroughly. We
consider scveral popular and unpopular structurcs of CM discussed in Raudys (1991)
and show that when assumptions on the structure of the matrix are correct the
structurization of CM helps to reduce the gencralization error in small Iearning-sct
cases. Efficacy of the matrix structurization incrcascs if onc uscs the information
about the structure in order to decorrclate and normalise the data, and uscs the
optimally stopped single layer perceptron classificr afterwards.

Notations and abbreviations:

N - number of learning vectors in one class, p - number of the features

(dimensionality),
RDA - regularized discriminant analysis, LDA - lincar discriminant analysis,
EDC - Euclidean distance classificr, AR - aulorcgression model,
OFS - original feature space, TFS - transformed feature space,
SLP - single layer perceptron, CM - covariance matrix,

2. Structures of the covariance matrix.

Use of the Gaussian model to describe the distribution density of the pattern
classes leads to the quadratic discriminant function. In two category case, one needs
to estimate two p-variate mean vectors and two pxp covariance matrices, altogether
2p+p(p+1) parameters. An assumption that the pattern classcs share the common CM
% lcads to the standard Fisher lincar discriminant function (DF) with smaller
number of paramcters to be estimated from the learning-set

gx)= (x~~2‘~ (X V+x )8t (1.3, @

where

P @ are sample means,

S is the sample estimate of the covariance matrix, and
X = (x,, ..., x,)" is a p-variate vector to be classified.

When one assumes that the features are independent, instcad of S one uses a
diagonal variance matrix D composed from diagonal clements of S. In certain
applications, the features can be grouped into blocks of the features, and one of
possible ways to reduce the number of parameters is to assume that the blocks are
statistically independent. In the high dimensional cases, the number of parameters
required to characterise CM
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is reduced immensely.

An interesting and useful model which requires a small number of parameters
to describe a joint dependence between all p variables is a model based on an
approximation of a joint probabilily distribution by the first order tree dependence

Sx, %, xp) = fix) fix, |xl)j(x3 |xg, x;)...j(xp lxp_‘,..., Xy Xp). @)

In this modcl, it is assumed that cach variable is conditioncd upon, at most,
onc another variablc. Then probability density function (4) can be written in the
following form:

S Xy oo x,)=[E[ S(xlxm)  ©Osm<p) )
j=1

where a sequence m,, ..., m, conslitutes a graph of connections (an unknown
permutation of the integers 1, 2,..., p) and flx; lxo), by definition is equal to fix;). In
a general casc, the covariance matrix have ps p non-zero clements. An inversc of this

matrix £ which has to be used to design the classificr, however, has only 2p
different non-zero clements. It is a result of the assumption that each component of
the vector x depends only on one another component. This important model lacked to
be described in all pattern recognition textbooks and remained practically unnoticed
in pattern recognition community.

There is a number of models that allow to evaluate temporal or spatial
dependence between the data points. The recognition of the temporal and spatial
objccts and phenomena requires to work with vectors of very high dimensionality. It
is an advantageous arca of application of the constrained statistical classifiers.
Therefore an cxpertise gained in this knowledge arca probably can be uscful in ANN
design.

Let the components x,, x,, ... , X X, of the multivarialc vector x arc
mcasurcments differing in time or in space, and assume they are stationary random
process. Then the covariance matrix has Tocplitz structure. Only p paramcters (5,,

Bpaeee 8p ) describe the structure of dependence between the variables. A number of

special models, such as circular, autoregression, moving average, ARMA, and
others, allow to reduce the number of parameters even more. In the circular model.
we have a symmetry: 3= 8, , 0= Sp_,, 8= 6,,_2, e.t.c.. This model is competent to
cstimate random periodical processes. A number of paramceters g in the autorgression
model, depends of the model’s order, and typically g<<p.
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3. Simulation experiments.

The efficacy of structurization of the covariance matrix was performed by
means of simulation. In the experiments, we cstimated parameters of different
modifications of the linear discriminant function by using different randomly chosen
lcarning-scts and cstimated the gencralization crror on a large test-sct (for a real
world data) or calculated it analytically (for an artificial Gaussian data). Two
category case was analysed.

Following linear classifiers were analysed in this section:

- RDA - the standard linear regularized discriminant analysis (RDA) with the
optimal A evaluated from 50 cstimates of the generalization error,

- the standard lincar Fisher classificr (when # < p, we used a pscudoinverse
of the covariance matrix),

- EDC - the Euclidean distance classifier, where it is assumed £=0 I,

- Tree - LDA with the tree type dependence structured covariance matrix,

- Tocp - LDA with the Toeplitz structured covariance matrix,

- Circ - LDA with the circular structured covariance matrix,

- AR1 - LDA with the first order autoregression structured covariance matrix,

- AR4 - LDA with the fourth order autoregression structured covariance matrix.

We concentrated our analysis mainly on a case when the number of learning
cxamples 7= Ni+N, = 2N is smaller than the number of dimensions p of the feature
vector. Therefore in our investigation, we used 40-variate artificial Gaussian data
similar to two 40-variatc Friedman (1989) Gaussian data scts uscd in analysis of the
lincar RDA where the first or last features were most informative. In our analysis we
uscd also cleven 40-variate Gaussian data sets where various types of assumplions on
the structure of the covariance matrices were fulfilled.

In addition to 13 artificial data types, in our rescarch, we also used five real
world data sets. In 28-variate (spectral and cepstral features) vowels data, we had 400
vowels in one class pronounced by 20 spcakers, and in 66-variate (spectral and
cepstral features) lung noise data, we had 180 vectors measured on 18 paticnts in onc
class. 65-variate (shape, size, histogram statistics, Gabor wavelct response, elc.)
mammogram data sct consists of 57 bening and 29 malignant mammograms, and 60-
variate (cnergy within a particular frequency over a certain period of time) sonar data
sct represents two classes that describe sonar signals bounced off a metal cylinder and
those bounced off a cylindrical rock (111 and 97 patterns, respectively). Two class
33-variate ionosphere data sct contains 127 and 226 patterns. While training the
classificrs, we have chosen N vectors from each class randomly, and tested the
classifiers on all vectors. Asymptotic error rates obtained by using different
structurization methods are summarized in Table 1.

In all experiments with artificial Gaussian data we have chosen N\=N, =
N=13, the samc dimcensionality/ sample size ratio as in the Fricdman’s cxperiments
with the LDA, All experiments were performed 23 times with cach size of the
lcarning-sct.
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Table 1. Asymptotic error rates of the data.

No Modcl Data LDA Cire Toepl Tree AR} AR4
1 Cire. | Cio 0,03 0,03 0,03 0,05 0,28 0,21
Circ. 2 Cl15 0,03 0,03 0,03 0,05 0,19 0,14
Circ. 3 Co5 0,03 0,03 0,03 0,04 0,06 0,05
Toepl 1 T1105 0,03 0,05 0,03 0,04 0,06 0,05
Toepl2  T1054 0,03 0,05 0,03 0,04 0,04 0,04
Toepl 3 T31010 0,03 0,04 0,03 0,03 0,03 0,03
Treel  Treel 0,03 0,09 0,09 0,03 0,06 0,09
Tree2  Tree2 0,03 0,28 0,29 0,03 0,15 0,28
Tree3  Treel 0,03 0,10 0,10 0,03 0,07 0,10
AR 1 AR046 0,03 0,03 0,03 0,03 0,03 0,03
AR4  AR034 0,03 0,04 0,03 0,03 0,07 0,03
12 Friedf FAMS 0,03 0,10 0,10 0,09 0,30 0,10
13 Fried1 FaM1 0,03 0,04 0,04 0,04 0,30 0,04
14 Wowel Wovels 0,01 0,06 0,05 0,05 0,06 0,07
5 Lung Lung 0,05 0,23 0,23 0,26 0,29 0,30
16 Mamm. Mamm., 001 0.01 0.01 0.01 0.01 0.01
17 Sonar Sonar 0.087 0.164 0.149 0.221 0.188 0.173
18 Tonosph  Ionosph  0.103 0.145 0108 0.137 0.177 0.145

TSN A WN

Results are presented in Table 2. In the first column, we present the code of
the data and ¥, the learning set size (for the real world data). In the second one, we
present mean values of the generalization error of the standard RDA with optimal
valuc of A. In following columns, we present relative eficacics of different classificrs:
the generalization error of our bench-mark method - the standard RDA divided by
the generalization error of the classifier under consideration in this column:
y =P, r,"™" Gamma (y) values are presented in bold for these Gaussian models
where assumptions of the covariance matrices structure are correct.

From the simulation experiments we see the RDA always outperform the
standard methods: the Fisher LDA and EDC. When assumptions on the structure of
the matrix are correct the structurization of the covariance matrix ofien helps to
reduce the gencralization error in small learning-sct cascs. In some cascs, the gain
can be very high. E.g. for data AR034 we obtained a gain - 4.59 times on average for
25 randomly choscn Icarning scts. For some configurations of the data and Icarning-
sct sizes, even for cases when the postulated dependence model was correct, the
structurization resulted no gain in comparison with the regularized discriminant
analysis. Examples arc all Gaussian data scts generated according the Tocplitz
model. For these three data models even simple EDC performed better than the linear
DF with the structured covariance matrix.

Structurization by the first order tree dependence, the Toeplitc, AR and
circular models resulted no gain while applied to all real data sets. For the lung data
the representation of 66X66 covariance matrix in a block form (3) composed from six
Lix11 blocks in the diagonal resulted the asymptotic error 0.13, and helped to obtain
a certain gain: in 25 cxperiments with learning scls of size N=22 the
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generalization crror was decreased 1.20 times (JEP,RpA = 0.24), for N = 33 - 1.31
times (FFPRpA=0.23), however for N=132,y = 0.52 (EPRpr =(.07).

Table 2. The mean gencratizalion crror EP,;™ of the standard lincar RDA and the

. N Ry clasifier N R .
relative efficacics y = P, 1P, of the Fisher classifier, EDC, and LDA with use
of different structured covariance matrices.

Classif. EPRDA  yBuclid yF&Circ YF&Tp 7yF&Tree yF&ARL YF&AR4  yFisher
Method
Data
C30 0,12 0,43 1,95 0,55 0,69 0,43 0,43 0,63
C15 0,11 0,62 1,76 0,75 0,8 0,62 0,62 0,70
o5 0,05 0,95 0,92 0,72 0,73 0,87 0,81 0,43
TI105 0,05 0,9 0,59 0,67 0,81 0,89 0,83 0,41
T1054 0,05 0,96 0,6 0,69 0,67 0,83 0,45 0,38

T30 004 098 055 0585 05 0,71 056 0%
Treel 0,15 072 091 088 1,1 076 092 0,58
Tree2 0,2 077 095 0,92 1,6 0,74 100 058
Tree3 0,3 062 067 067 123 062 064 075
ARO46 016 076 226 2,05 115 2,65 2,9 0,55

AR034 0,26 0,60 3,08 3,70 1,02 0,63 4,59 0,62
FAMS 0,21 0,84 0,83 0,83 1,03 0,84 0,86 0,67
FAMI 0,05 0,99 0,97 0,91 0,67 0,99 0,99 0,31
Wov.9 0,08 0,70 0,90 0,99 0,91 0,74 0,62 0,49
Wov.14 0,07 0,7 0,89 0,83 0,82 0,77 0,65 0,27
Wov.56 0,03 0,35 0,44 0,53 0,48 0,39 0,35 0,63
Ma 10 0,18 0,55 0,65 0,63 0,97 0,61 0,62 0,66

Ma 20 0,09 0,37 0,42 0,43 0,84 0,39 0,41 0,54
Ma 25 0,07 0,26 0,32 0,33 0,69 0,32 0,32 0,51
Son20 0,22 0,70 0,80 0,74 0,83 0,80 0,78 0,8
Son 30 0,19 0,68 0,79 0,74 0,76 0,77 0,76 0,65
Son 80 0,11 041 0,66 0,65 0,55 0,60 0,58 0,92

lonol1 0,16 0,72 0,86 0,74 0,88 0,78 0,89 0,64
fonol6 0,14 0,67 0,79 0,73 0,82 0,72 0,81 0,52
Tono66 0,10 0,57 0,75 0,91 0,79 0,60 0,76 0,90

4. Data transformations and the single layer perceptron.

Recently it became known, that after the first total gradient training itcration
of the single layer perceptron (SLP), one can obtain the Euclidean distance classifier
and move further towards RDA and the standard Fisher linear DF if certain
conditions are satisfied (the centre of the data is moved 1o the zero point, for =N,
one uses symmetrical targets for both pattern classes, starts training from zcro
weights, and uses the total gradient training). Thus, if the training is successf{ul and
one succeeds {o stop training optimally, onc can obtain the optimal RDA by using
this itcrative numerical method. In further training, the SLP classificr can move
towards thc minimum empirical error and the support vector (maximum margin)
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classificrs (Raudys, 1996, 1998). Thercfore, il the data differs from Gaussian with
common covariance matrix (hen, in principle, in further training one can expect (o
obtain smaller gencralization crror,

lcrative training of the single laycr perceptron becomes difficult when
variances of the data are different in various dircctions; it means when cigenvalucs of
the covariance matrix ¥ are essentially different. We can try to equalise the variances
by transforming the data by means of rotation and scaling: y = D?T°x, where D and
T are p X p diagonal cigenvalue and p X p eigenvectors matrix of the sample
covariance matrix 8. Then sample covariance matrix Sy of the vector y will be the
identity matrix. Afier the first lcarning iteration we obtain the discrimianant function

1
2= -5 3+ (V-7 ks = (x-{:(i">+i‘”}>’8“ (VX Pks, (©)

where 7V =D 9 =p"?1'x?P and ky is a constant.

1t mcans, afler the training in the y space, afier the first itcration we obtain
the classificr that is equivalent to the Euclidean distance classifier in the transformed
(y) space (TFS), and the standard lincar Fisher DF in the original (x) fcaturc spacc.
Let now transform the data by means of the matrix Geoa = (D+A)'?T: y = Groax.
Then after the first iteration we obtain the classifier that is cquivalent to RDA
analysis in the x space. When we transform the data by means of matrix Gper =
D *Tree™: ¥ = Gmex,  then after the first iteration we obtain the classifier that is
cquivalent to the LDA with tree structured covariance matrix in the original feature
spacc (OFS). In above equation, D and T arc are p X p diagonal eigenvalue
and p X p eigenvectors matrix of the trec structurized cstimate of the covariance
matrix. The same considerations are valid for other structurization methods. When
the data is Gaussian with the common for all classes covariance matrix, and the
postulated feature dependence model is correct, then there is a small chance (o reduce
the gencralization error in further training. For a non-Gaussian data, models with
different CM in both pattern classes, and cases when one postulates the structure of
CM incorrectly, however, an additional usc of SLP can result a certain success.

Therefore, in a sccond part of our experimental work, we tested the nonlincar
SLP. In simulation experiments we translated the Icarning data centre 0.5(X V+X®)
into the zero point, initialised the SLP with the vero weight vector, used the sigmoid
activation function and trained the perceptron in a batch-mode with a standard back
propagation algorithm using targets 0 and 1. In experiments with small lcarning scts,
in order to obtain a large margin quickly, we increased the learning siep n
progressively with cach iteration number £ 1=0.2%1.03%; #,,., = 500. We trained the
SLP in the original (x) space and afterwards in the transformed space (y = Tx). In
cach experiment, we determined an optimal stopping moment 1,,, from estimates of
the generalization error obtained either from the test-set data (for the real world data)
or calculated analytically (for Gaussian data). Results arc presented in Table 3.
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Table 3. The mean generalization error EP,"™" of the standard lincar RDA and the
. . clavsifler . .
relative clicacies y = r.p, of the SLP classificr without and afler the data

transformation performed by usc of differently structured covariance matrices.

Class. vy SLP ySLP ySLP ¥y SLP vy SLP vy SLP y SLP

Method EP*®*  inOFS inTFS inTFS inTFS inTFS inTFS  inTFS

Data b}’ Teire by TTop b}’ Tvee by Tars by Tars by Teonv
C30 0,12 0,9 1,97 0,78 1,08 0,5 0,49 0,38

Ci5 0,11 0,91 1,77 0,98 0,88 0,67 0,66 0,36
Co5 0,05 0,99 0,92 0,74 0,78 0,87 0,82 0,2
TI105 0,05 1,00 0,64 0, 0,89 0,94 0,85 0,19
T1054 0,05 1,00 0,62 0,7 0,65 0,84 0,48 0,16
T31010 0,04 1,00 0,56 0,56 0,62 0,72 0,57 0,14

Treel 0,15 1,00 113 1,09 1,21 1,05 LIR 0,47
Tree2 0,2 0,98 1,12 1,08 1,68 0,95 1,18 0,57
Tree3 0.3 0,94 1,07 0,99 1,54 0,9 1,09 0,78

ARU46 016 Lo 229 217 122 2,67 292 0,45
AR0O34 026 089 345 384 1,23 1,05 462 067
M 021 0,9 09 09 109 097 098 063
FAML 005 1,01 098 092 069 1,00 100 021
Wov.9 0,08 097 1,09 L19 099 091 08 0,32
Wov.14 0,07 1,06 1,08 1,05 099 097 088 02
Wov.56 0,03 1,05 1,12 1,1 1,08 1,03 1,05 0,84
Mal0 0,08 098 1,02 096 1,2 09 098 07

Ma 20 0,09 1,02 1,11 1,02 1,64 1,07 1,04 0,47
Ma 25 0,07 1,19 1,44 1,33 1,41 1,54 1,38 043
Son20 0,22 1,08 0,98 0,96 0,96 0,99 0,99 0,66
Son 30 0,19 1L 1,03 1,03 0,99 1,04 1,04 0,01

Son 80 0,11 1,45 1,98 1,93 1,93 1,93 1,94 1,89
fonol1 0,16 1,00 1,01 0,99 0,96 1,05 1,13 0,54
Tonol6 0,14 1,05 1,01 0,97 0,94 1,06 1,1 0,48
lono66 0.1 1,31 1,35 1,32 1,36 1,29 1,33 1,23

In the Table we have the average results. The results advocate, the cfficacy of the
optimally stopped SLP in OFS is almost the same as that of the RDA. Higher values
of the generalization error of the SLP typically were associated with these few cases
when 500 itcrations were not sufficient to train the perceptron. It is worth to note
that after the transformation y = Tx, we obtained a significant incrcase in the
learning spced: typically only few training iterations were sufficient o obtain the
smallest generalization error.

Practically in all experiments, the transformations of the data according the
structured estimate of the sample CM and subsequent use of the optimally stopped
SLP helped to improve efficacy of the covariance matrix structurization. E.g. for the
Gaussian data C30 the additional use of the data transformation based circular model
and SLP helped to reduce the generalization error 1.97 times in comparison with the
best statistical method - RDA. For some modcls additional use of SLP lcads to a
significant gain: ¢.g. with tree type dependence model we had athe gain yrree=1.23,
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and now v, .. = 1.56. For Tocplitz model, however, possibly, we have chosen too
“difficult™ model and cstimated model’s parameters incfficiently and did not
obtained any gain: c.g. VraToep = 0.67, and y SLP in TS by Troeptitc = 0.71, however
for other synletic data (AR034) the Toeplitz model structurization resulted a
significant gain: y SLP in TFS by Troeplitc — 3-54-

Similar observations we have for the real world data too. For the wovels data
and learning-set sizes 9, 14 and 56 for the Toeplitz model we have had
YLDA&Toep = 0.99, 0.83, and 0.53, i.e. no improvement in comparison with RDA.
Now , with the data transformations and subsequent SLP training, we have ¥ SLP in
TS by Troeplitc = 1.19, 1.05, and 1.10. For the lung data and learning-set sizes 22, 33
and 132 for the block matrix model we have bad  yF&Tocp = 1.20, 1.31 and 0.52.
After the transformations and SLP we have y SLP in TS by Troepitc ~ 1.36, 1.62,
and 2,05, i.c., an obvious improvement,

5. Concluding remarks.

The efficacy of the structurization of the covariance matrix depends both on
the data as well as on peculiarities of the particular learning-set. In a part of the
experiments, we obtained no or very insignificant gain.

In our comparative experiments, we used optimal valucs of & for the standard
RDA cstimated from the test-sct, or analytically for the Gaussian patiern classes.
Thercforc our cxperiments result optimistic cstimates of the cfficacy of the

rcgularized discriminant analysis and pessimistic cstimates of our cfficacy
. RDA | classifier . .
coefficients y = P, /P, . Nevertheless, we see that for certain Gaussian

models use of correct assumptions on the structure covariance matrix result an
obvious gain. In most cases, structurization outperform the standard linear
discriminant analysis, and in some cases, it loses against the rcgularized
discriminant analysis. Therefore in practical applications, one obligatory must usc an
additional validation-sct in order to decide which classification method to use. In
extremely high-dimensional cases, however, onc can expect these parameters can be
cstimated by the Icaving-onc out or rotation methods. The situation is analogous to
RDA where we have (o choosc the optimal valuc of the regularization parameler A.

Our experiments with the artificial and rcal world data scts have demonstrated
that the efficacy of the matrix structurization increases if one uses the information
about the structurc in order to decorrelate and scale the data, and uscs the optimally
stopped single layer perceptron classifier aflerwards. It is a new way fo incorporate
an additional, the statistical, information in the perceptron training process. We sce,
that it is useful to structurize the covariance matrix. More statistical models and
more real world data sets should be analysed in future research work. Special
numerical calculation schemes that speed up the calculations in the model validation
stage should be developed.

In present paper we analysed the cfficacy of the structurization of the
covariance matrix and the joint usc of the data transformation and the SLP in the
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lincar discriminant analysis problem only. No doubt, this structurization of the
sample covariancc matrix can be used in pattern classification with different
covariance matrices as well as in regression {asks.
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