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A b s t r a c t .  When a classifier is used to classify objects, it is important 
to know if these objects resemble the training objects the classifier is 
trained with. Several methods to detect novel objects exist. In this pa- 
per a new method is presented which is based on the instability of the 
output of simple classifiers on new objects. The per~brmances of the 
outlier detection methods is shown in a handwritten digit recognition 
problem. 

1 I n t r o d u c t i o n  

A very important  aspect of the use of neural networks is the ability to gener- 
alize. Good generalization means that  the classifier gives reasonable responses 
on unseen data. This can only be achieved when the new data  originates from 
the same distribution as from which the data  is trained. When objects from a 
different data  distribution are classified, the output  responses of the classifier are 
completely unpredictable. To prevent these unpredictable responses the novelties 
have to be detected. 

Detection of novel objects can be done by estimating the input data  density 
and rejecting the objects in low" probability areas [BL78]. The density estimation 
can be based on a model of the data, for instance a mixture of Gaussian distribu- 
tions, or it can be estimated by Parzen windows (see for instance IBis95]). Both 
methods have their drawbacks. In a Gaussian mixture the number of kernels 
has to be chosen beforehand. The assumption of Gaussian distributions can be 
a severe approximation and in these cases a large number of kernels is necessary 
to make a reasonable approximation. 

Parzen density estimation requires large numbers of training objects to make 
a reliable probability density estimation. It also requires a width parameter  a 
which determines how smooth the resulting probability density distribution is. 
This parameter  is often optimized over the complete feature space using a cross 
validation method. When large differences in density exist, the Parzen kernel 
method will give poor results in low density areas. 

Another approach of outlier detection is to find bounded regions which con- 
tain (almost) all data  ([MKH93]). These methods use restricted shapes for their 
class boundaries like hyperspheres. This limits how tight the boundary can be 
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put around the class objects, especially when ctasses are far from circular dis- 
tributed, and this limits the ability to discern between novel data  and valid 
data. 

In this paper we propose a new method to detect novelties, based on the 
instability of the outputs of a simple classifier. In this way objects in regions 
which are difficult to learn for a classifier, are identified. 

In section 2 we present the three simple methods to detect novelties (mixture 
of Gaussians, Parzen estimator and a nearest neighbor based estimator), and 
the instability based method. In section 3 the methods are used in practice in a 
handwritten digit recognition problem. We summarize the conclusions in section 
4. 

2 T h e o r y  

2.1 P r o b a b i l i t y  d e n s i t y  or i n s t ab i l i t y  e s t i m a t e s  

We assume we have a training (or learning) set of objects x~ r, i = 1, ..., N, each 
object containing d feature values. Each of these training objects is independently 
drawn from one fixed probability distribution (the objects are identical and 
independent distributed). 

In statistical pattern recognition several methods to estimate probability den- 
sities exist. Two very simple methods are the Gaussian mixture model and the 
Parzen windows (see for instance [Bis95]). In a Gaussian mixture containing G 
kernels the probability density is estimated by: 

G (27c)d/2'~rt ( - ~ ( x -  #itr'r"~tr'-t'X) tZ'i ) t ) p(x) : Z exp _ pit) (1) 
i : 1  

where d is the dimensionality of the feature vectors, #~r and E[ ~ the mean and 
the covariance matrix of kernel i in the training set respectively. In this paper one 
kernel for each of the classes is estimated, with a common covariance matrix to 
increase the accuracy of the estimations. Because this matrix has to be inverted 
when actual probabilities have to be calculated, the mixture of Gaussians can not 
be used when the number of objects per class is smaller than the dimensionality 
of the feature space and the covariance matrix becomes singular. 

In the Parzen window approach, there are as many kernels as there are train- 
ing objects and only the width a of the kernels has to be estimated. 

1 

This ~r is estimated using the leave-one-out method[FH89]. 
Instead of estimating complete probability densities, an indication of the local 

densities can be obtained by comparing the distance between the test object x 
and it 's nearest neighbour in the training set NNt~(x), and the distance between 
this nearest neighbour NNt~(x) and it's nearest neighbor in the training set 
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NN t~ (NN t~ (x)). When the first distance is much larger than the second distance, 
the object will be regarded as an outlier. We use the quotient between the first 
and the second distance as indication of the validity of the object: 

IIx - N N t r  (x)l l  

p(x) = HNNt (x) _ NNt (NNt (x))[ [ 
(3) 

where NNtrx is the nearest neighbour of x in the training set. 
A new method is to use the instability of a simple classifier. By taking boot- 

strap samples the same size as the original training set, and by training several 
classifiers on these sets, the outputs of the different classifiers on the test set 
will differ. The variation in the outputs indicates how large the influence is of 
taking another training set. A large variation indicates that  the object is hard 
to classify. 

p(x) = 8 [outt~(x) 2] - $  [outt~(x)] 2 (4) 

where out ~ (x) is the output value of the classifier trained with bootstrap samples 
of trainset {x tr} for object x. 

2.2 F i n d i n g  t h e  ou t l i e r s  

When probability densities are estimated and used to reject uncertain objects, 
the interpretation of the rejection threshold is clear: when the threshold is put on 
1%, objects with probability of 1% or less are rejected. When another continuous 
measure, like the quotient between two distances or the stability of classifier 
outputs, is used, the threshold level is harder to derive. 

In this paper we assume that  the measured quantity on the objects is roughly 
Gaussian distributed over the objects. New objects are measured using the differ- 
ent methods and compared with the measurements of the training objects. When 
the difference between the new object and the mean of the training objects is 
larger than three times the standard deviation in the training distribution, the 
new object is rejected. 

For the density estimations, the Parzen estimator and the Gaussian kernel 
estimation, this results in: 

reject x if: 

log(p(x)) < E [log(p(x r))] - 3.0 • var(log(p(xt ' ))  

and for the distance based methods, the nearest neighbour method and the 
stability method: 

reject x if: 

p(x) > E [p(xtr)] + 3.0 * var(p(xtr)) (6) 
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3 E x p e r i m e n t s  

The outlier detection was performed on hand written digits. The original dig- 
its were scanned from nine maps from a Dutch public utility. The digits were 
deskewed, normalized to fit into a 30 by 48 pixel region and thresholded. Of 
2000 hand written digits (200 per class) several different feature types are mea- 
sured. In this experiment we used two data  sets, the Zernike feature set and the 
Karhunen-Lo6ve feature set. The Zernike feature set contains 49 Zernike mo- 
ments and 6 morphological features. The Karhunen-Lo6ve feature set contains 
the first 64 principal components of the digit images (see for more explanation 
[BDT97]). From these feature sets nine digit classes are used as normal train 
and test data, the last digit class is considered the outlier-class. 

For the stability method, a linear classifier is used based on maximizing 
Fishers criterion (see for instance [Rip96]). The classifier outputs the normal- 
ized sigmoid of the distance to the decision boundary. The two-class classifier is 
adapted to handle multi-class problems by training separate classifiers between 
one class and all other classes combined. To obtain one output  value for the 
instability of an object, 25 bootstrap samples and classifiers were generated and 
the variation in the nine class outputs is averaged. 
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Fig. 1. Distribution of the nearest-neighbour-rneasure for the training set (black), the 
test set (gray) and the outlier set (white) for the Zernike data set with 50 train samples 
per class. In this case the threshold is at p = 1.7 

The four different measures (equations 1, 2, 3 and 4) are compared using 
different training set sizes. For each training set size 5 training sets are draw and 
the results are averaged. The threshold is obtained by calculating the measures 
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on the training sets. In almost all methods the assumption that  the measure is 
approximately Gaussian distributed, is reasonably be met. Only in the nearest 
neighbour method the distribution of the measure in the training set is skewed 
to the left (see figure 1). 

The measures are tested on the test set and the outlier set. The test set 
contains all available samples which are no outliers, including the training set. 
The final performance measure is the fraction of the outlier class that  is rejected 
minus the fraction of the test set that  is rejected. Good outlier detection means 
that  the performance is close to one. 

3.1 T h e  resu l t s  

In figures 2 and 3 the results are shown of the four outlier detection methods for 
10 different outlier classes From the class that  is left out from the training set, 
the fraction rejected objects is plotted versus the number of training samples. 
The number of the class corresponds to the digit it represents. 

The first thing that  becomes clear, is the good performance of the Parzen 
estimator in the large dataset regime. This performance is biased, because for 
testing also the training data had to be used. Unfortunately for larger training 
set sizes this method becomes time and space consuming. All training objects 
have to be stored and for the processing of a new object distances to all training 
objects have to be calculated. Especially in high dimensional feature spaces this 

can be a burden. 
Second important notice is that for classes 6 and 9 in the Zernike dataset 

all methods perform extremely bad. This is caused by the fact that the Zernike 
features are rotational invariant and the 6 and 9 become indistinguishable. The 
results of the Parzen estimator is largely due to the use of training samples in 

testing. 
For small sample sizes the Gaussian model does not give an outcome as 

explained in subsection 2.1. Using more samples some classes can be clearly 
distinguished, for instance classes 0 and 8 in the Zernike dataset and classes 2 
and 4 in the Karhunen-Lo~ve dataset. For other classes this method does not 
work, classes 2, .., 6 and class 9 in the Zernike dataset and classes 0, 7, 9 in the 
Karhunen-Lo~ve dataset. These classes are surrounded by the other classes in 
the training set. 

The nearest neighbour method almost always performs poorly, only when 
classes are clearly distinguishable, like class 0 in the Zernike dataset, this method 
outperforms the other methods in relatively small sample sizes. This method 
seems to be sensitive to low density regions in the training classes. Due to the 
large internal sample distances, large portions of the feature space are then 
accepted as belonging to the class. 

The performance of the instability method in general is not very good at 
large sample sizes, but at small sample sizes it outperforms all other methods. 
By using more samples, the variation in in output of the (linear) classifier on 
the bootstrap samples becomes smaller. Only data in the neighbourhood of the 
classifier experiences output variations, and large portions of the data just hides 
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Fig .  2. The fraction of the outlier class that  is rejected minus the fraction of the test 
set tha t  is rejected for different training set sizes using the Zernike feature set. Solid 
line: mixture of Gaussians, dashed line: Parzen, dot ted  line: nearest neighbor, solid 
with diamonds: instabili ty based. 
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Fig .  3. The fraction of the outlier class that  is rejected minus the fraction of the test set 
tha t  is rejected for different training set sizes using the Karhunen-Lo~ve feature set. 
Solid line: mixture of Gaussians, dashed line: Parzen, dot ted line: nearest neighbor, 
solid with diamonds: instability based. 
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in the stable areas behind the train data clusters. Only a few classes can be 
distinguished using larger sample sizes, that are classes 7 and 8 in the Zernike 
set and class 4 in the Karhunen-Lo~ve set. In general the performance on the 
Karhunen-Lo~ve set is somewhat worse than on the Zernike set. 

In the Karhunen-Logve set the classes are almost Gaussian distributed (a 
Gaussian classifier on all classes achieves a test error of 5.0%, on the Zernike 
feature set it is about 20.3%). Simple linear classifiers on the Karhunen-Lo~ve 
set are more stable and especially in larger sample sizes the instability is not 
large enough to achieve as good results as in the Zernike feature set. To obtain 
also better results in larger sample sizes, the number of bootstrap samples have 
to be increased. 

4 C o n c l u s i o n s  

In this paper we presented a new method to detect outlier objects. This method 
uses the instability of the outputs of a simple classifier. "~%riations in outputs 
are obtained by training the classifiers on several bootstrapped versions of the 
training set. This method is compared with two models based on probability 
density estimation, a mixture of Gaussians and Parzen density estimation, and 
a method based on the estimation of local densities. In this last method the 
quotient between the distance to the nearest neighbor and the distance between 
the nearest and second nearest neighbor is used to detect outliers. The methods 
are compared on two feature set in a handwritten digits recognition problem, a 
Zernike feature set and a Karhunen-Lo~ve feature set. 

For large sample sizes the Parzen windows estimation is superior, at the 
expense of computing time and storage space. For some classes the Gaussian 
mixture model is superior tbr moderate sample sizes. The nearest neighbour 
method fails in almost all cases. Only well separated classes using smaller sample 
sizes can be distinguished. 

For small sample sizes the instability method outperforms all other methods. 
Larger sample sizes deteriorate the performance of the instability method, be- 
cause bootstrapped versions of a large training set do not result in much variation 
in the simple linear classifiers. Therefore the instability method does not detect 
all outlier objects, only those objects which are in areas of the feature space for 
which classification is hard. When an outlier class 'hides' in a stable region in 
the feature space, this method can not detect it. Also when a large number of 
training samples is used, a large number of bootstrap samples is needed to make 
a good estimation of the instability. But when simple classifiers are used, this 
will not be very expensive in calculation costs. 

5 A c k n o w l e d g m e n t s  

This work was partly supported by the Foundation for Applied Sciences (STW), 
the Foundation for Computer Science in the Netherlands (SION) and the Dutch 
Organization for Scientific Research (NWO). 



601 

References  

[BDT97] Breukelen van M., Duin R.P.W, and Tax D.M.J. Combining classifiers for the 
recognition of handwritten digits. In Pudil P., Novovicova J~ and Grim J, edi- 
tors, 1st international workshop on statistical techniques in pattern recognition, 
pages 13-18. Institute of Information Theory and Automation, June 1997. 

[Bis95] Bishop C.M. Neural Networks for Pattern Recognition. Oxford University 
Press, Walton Street, Oxford OX2 6DP, 1995. 

[BL78] Barnett V. and Lewis T. OutIiers in statistical data. Wiley series in probability 
and mathematical statistics. John Wiley & Sons Ltd., 2nd edition, ]978. 

[FH89] Fukunaga, K. and Hummels D.M. Leave-one-out procedures for nonparametric 
error estimates. IEEE Transactions on Pattern Analysis and Machine Intelli- 
gence, 11(4):421-423, April 1989. 

[MKH93] Moya, M.R., Koch, M.W., and Hostetler, L.D. One-class classifier networks 
for target recognition applications. In Proceedings world congress on neural 
networks, pages 797-801, Portland, OR, 1993. International Neural Network 
Society, INNS. 

[Rip96] Riptey B.D. Pattern Recognition and Neural Networks. Cambridge University 
Press, Cambridge, 1996. 


