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Abstract 
Classifiers based on probability density estimates can be used to find posterior probabilities for 
the objects to be classified. These probabilities can be used for rejection or for combining 
classifiers. Posterior probabilities for other classifiers, however, have to be conditional for the 
classifier., i.e. they yield class probabilities for a given value of the classifier outcome instead for 
a given input feature vector. In this paper they are studied for a set of individual classifiers as 
well as for combination rules. 
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1 Introduction 
If the error rate of a classifier is known to be e then the overall probability that an 
arbitrary new object is erroneously classified is ~. For individual objects, however, 
often more specific numbers for the expected classification accuracy may be 
computed, depending on the type of classifier used. Discriminant rules based on 
density estimation are usually able to yield estimates for the posterior probabilities 
P(m i I x), i.e. the probability that the correct label m of x is mi. Such numbers might be 

interpreted as the probability that the generated label is correct, given the object x. This 
quantity is called the confidence of the classification result. Confidences can be used 
for rejecting objects or for combining the classifier with other, possibly uncertain, 
information. An important application is the combination of classifiers. This can be 
given a theoretical foundation in case the classifiers yield reliable posterior 
probabilities [4], [5]. 

There are just a few classifiers that are really based on probability density esti- 
mates, parametric ones, e.g. assuming normal densities, or non-parametric ones like 
the k-nearest neighbour rule (k-NN). Many others just produce linear discriminant 
functions, or are, like the 1-NN rule, based on very local information that can't be used 
for density estimation. Neural network classifiers usually have [0,1] outputs that, if 
well trained, after normalization may be used as posterior probability estimates. These 
are, however, not based on densities and should thereby be interpreted differently from 
the above posterior probabilities. 

In this paper it will be shown to be possible to define so-called classification 
confidences for a large set of classifiers, i.e. estimates for classifier conditional class 
probabilities P(m i I S(x)) in which m i is the by S(x) selected class for object x. These 

are class probabilities generated from continuous classifier outputs, e.g. some distance 
from x to the separation boundary. It should be emphasized that classifier conditional 
class probabilities can be entirely different for different classifiers as they generally 
reflect the underlying assumptions or models on which the classifiers are based. 

In the next sections we will propose classifier conditional posterior probabilities 
for a range of classifiers. These will be experimentally evaluated on some simple 
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examples. Here also the consistency of classifier combination rules will be verified. 
The methods discussed in this paper are implemented in a Matlab toolbox [7] that can 
be obtained freely for academic purposes, 

2 Conditionalposterior probabilities for various classifiers 

For classifiers based on probability density estimates, posterior probabilities can be 
directly related to these densities: 

P(x ]f-oi)P(o~ i ) Fi(x)P(m i ) 

P(mi]x ) - ~e(xl°~i )P(mi)  - ~F i (x )P (mi )  (1) 
i i 

Fi(x ) is the density estimate for class m i. In some rules, like the k-NN rule and decision 

trees, densities are related to cell frequencies. As these can be very small numbers we 
prefer the Bayes probability estimates over just frequencies, avoiding problems with 
classes not represented in some particular cells: 

ni(x ) + 1 
P(%I x) = N(x) +c (2) 

in which ni(x) is the number of training objects of class m i in the cell related to x. N(x) 

is the total number of training objects in that ceil (in the k-NN rule N(x)=k 
everywhere), c is the number of classes. Equation (2) is not very informative for small 
k in the k-NN rule. For that reason we experimented with a distance related estimate 
described below. 

Many classifiers just produce a distance to a separation boundary S(x)=0, e.g. 
Fisher's Linear Discriminant. In order to map such a distance on posterior probabilities 
they should be scaled properly. An attractive method to do this is using a 1-dimen- 
sional logistic classifier [6] which maximizes the likelihood of the classified training 
objects. This can be achieved by optimizing o~ in the function: 

1 
P(°3itx) = s igm°id(~Si(x))  = 1 + exp(-~Si (x) )  (3) 

which maps the classifier on the [0,1] interval. An important point is the consistency of 
the classifier with the posterior probabilities and the confidences: classifications 
derived from the latter should not differ from those derived from the first. For that 
reason the constant term is suppressed in order to keep the position of S(x) = 0 in the 
feature space identical to that of P(milx) = 0.5. This method can be used for all linear 
and polynomial classifiers. 

For the case of the k-NN rule we considered two possible estimators for the 
posterior probability. The most obvious one is based on (2): 

~ k i+  I 
P = k + c  (4) 

in which k i is the number of neighbours of class m i. The problem with this estimator is 

that it has a limited range of outcomes for small values of k. Therefore we investigated 
the possibility to include the object distance into the estimator. Let us assume that for a 
particular object x class mi has the majority with k i neighbours. Let the distance to the 
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most remote object among these k i neighbours be di(x ). The distances to the ki-th 

object of the other classes are denoted by dj(x) (j = 1,c, j ¢ i). As the class densities in 

x are inversely proportional to these distances we propose the following posterior 
probability estimator for class o~ i 

(c - 1)di(x ) 2 
P~ = 1 -  (5) 

d/x) 
j = l , c  

The two estimators (4) and (5) will be compared experimentally in the next section. 
We also experimented with a dimension dependency in (5) as densities are related to 
the multidimensional integrals over spheres determined by the nearest neighbour 
distances. Especially for high-dimensional situations this yielded very bad results as 
often the data itself has a lower and intrinsic dimensionality than the feature space that 
is often hard to determine. 

Feed forward neural networks can easily be given continuous outcomes on the 
[0,1] interval. For well trained and sufficiently large networks they approximate the 
posterior probabilities. In general they can at best be treated as classifier conditional 
posterior probabilities as an arbitrary, possibly nonoptimally trained neural network 
will not adapt itself to the underlying data distribution. Network outcomes can, 
however, often successfully be used for rejection and classifier combining purposes. 

3 T h e  confidence error 

An important point of consideration is how the quality of the classification 
confidence estimators should be defined. Obviously unbiased estimators are desired: 
on the average a fraction p of all objects with confidence p should be classified 
correctly. Moreover, these estimators have to say something interesting. If all objects 
are given the same confidence 1-e (e is the error rate) then the unbiasedness demand is 
satisfied but the result is not informative. Reliably classified objects should have larger 
confidences than objects close to the decision boundary. A good criterion to measure 
this over set of objects may be the likelihood: -Zlog(pi). This measure, however, yields 

problems for very small probability estimates. Therefore we decided to define a confi- 
dence error q as the mean square error between the posterior probability estimate and 
the classification correctness indicator C(x): C(x) = 1 if x is correctly classified and 
C(x) = 0 if x is erroneously classified (see also [8] and [9]): 

q = E{(C(x) - p(x)) 2 } (6) 

p(x) is the estimated confidence for object x. The expectation E(o) is taken over the 
weighted sum ot~ the class conditional distributions of x. C(x) depends on the classifier 
S(x). As a result the confidence error q depends on the classification problem and the 
classifier under consideration. This classifier yields for each x two outputs: a class 
assignment t.o i and a confidence estimate p. Using an independent testset estimates for 

and q can be obtained. They characterize the behaviour of the classifier with respect 
to the data: ~ describes the overall reliability of the hard classification o~ i, q describes 

the overall reliability of the confidence output p(x). 
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A typical value for q is obtained by considering a classifier for which p(x) = 1 
Vx, i.e. it states to be sure on all its decisions. Easily can be derived that for this case 

q = s • 12+(1-~) • 02 = s. This is not an absolute upperbound for q (which is 0.25 
reached for p(x) = 0.5 Vx) but a value that can easily be realized without any effort. A 
lower bound is found for the case in which a fraction of 2s of the objects is entirely on 
the edge and has correctly p(x) = 0.5 and all other objects have p(x) = 1. So all unreli- 
able classified objects are clustered to a set of size 2e. Random assignment (these 
objects are on the decision boundary) thereby yields an error of s. Now 

q = 2 s 0.52 = e / 2 .  So in practice q is bounded by ~ /2  < q < a. For that reason we 

define 

9 -  q 1 
2 (7) 

bounded by 

0 < 9 <  1 /2  (8) 

to be the normalized confidence error p. It will be studied in the below experiments. 
Note that 9 = 0 is only be reached if all unreliable objects are on the decision boundary 

and if this is detected by the classifier. 9 = 1 /2  is reached if simply all confidences are 

set to 1. Values with 9 > 1 /2  are possible and indicate that the individual confidences 

should not be used. Applied to rejection these bounds can be interpreted as: 9 = 0: 
rejection is very effective as the error decreases by 8/2 if 8 objects are rejected, 

p = 1 /2  : rejection is ineffective as the error decreases by 8s if 8 objects are rejected. 

4 Experiments 

In this section confidence will be studied experimentally for a set of two-class 
problems and a set of classifiers. Here also various classifier combination rules will be 
considered as far as they are based on the posterior probabilities: minimum, median, 
maximum, mean and product. 

The following datasets are considered: 
a. Two 2d Gaussian classes with different covariance matrices, 100 object per class 
b. Two 10d Gaussian classes with equal covariance matrices, 100 objects per class 
c. A real 8d data set with two classes having 130 and 67 objects (the 'Blood' dataset 
[10]), see fig. 1 for the first two principal components. 

First we compared the two confidence estimators (4) and (5) for various k in the 
k-NN method using the datasets a and b. It appears, see fig. 2 and 3, that according to 

the normalized confidence error p the distance based estimator p2 is only better for 

k = 1. So we decided to use p2 just for the 1-NN method and for k > 1 we used p1, 
based on cell frequency counts. 

For each of the three datasets we ran 25 experiments with randomly selected 
training sets of various sizes (3 up to 50 objects per class). A set of ten classifiers was 
trained (see below) and tested with the remaining objects. We also combined in each 
experiment all 10 classifiers into a single classifier based on the classifier conditional 
posterior probabilities. As combiner the maximum, median, minimum, mean and 
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Fig. 1. Three datasets used: 
a) 2d Gaussian 
b) 10d Gaussian (features 3-10 are redundant) 
c) First two principal components of the 

'Blood' data. 

product rules were used. Averages for 
the classification error and for the 
normalized confidence error were 
computed for all individual and 
combined classifiers. In fig. 4 some e-p 
plots are given. In table 1 the results for 
20 objects per class are shown numeri- 
cally. 

The following classifiers are 
used: Nearest Mean (NM), Fisher 
linear discriminant (Fish), Bayes 
assuming Gaussian densities with 

different uncorrelated (diagonal) covari- 
ance matrices (BayU), Bayes assuming 
Gaussian densities with arbitrary covari- 
ance matrices (BayQ), 1-nearest neigh- 
bour rule (I-NN), the k nearest 
neighbour rule with built-in optimiza- 
tion of k over the leave-one-out-error in 
the training set (k-NN), a binary deci- 
sion tree with maximum entropy node 
splitting and early pruning (Tree), see 
[2] and [3], Parzen density estimation 
with built-in optimization of the 
smoothing parameter over the leave- 
one-out likelihood estimation on the 
training set (Parz), see [1], a neural net 
with 3 hidden units trained by the back- 
propagation rule with a variable step- 
size (BPNC) and a neural net with 3 
hidden units trained by the Levenberg- 
Marquardt rule (LMNC). We used the 
standard Matlab routines and trained 
them until no error decrease was found 
over the last n/2 steps. 

Low values for the classification error e and low values for the confidence error 
p are good, so classifiers in the bottom-left region of the plots match the data. The 
following observations can be drawn from the experiments: 

Classification errors tend to decrease for increasing sizes of the training set. 
This does not hold for the normalized confidence errors as defined by (7). Partially this 
is caused by the normalization by the decreasing error. It is also the consequence of the 
fact that the accuracy of some density estimates fits itself to the data size like in the 1- 
NN rule and in decision trees in which the final nodes tend to have a constant number 
of training objects. 
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The two neural classifiers perform bad, especially the training by the Leven- 
berg-Marquardt rule. Inspection of what happened revealed that in a number of experi- 
ments training didn't start at all and was terminated due to a constant error (we used 
the standard Matlab Neural Network routines). 

Confidences computed for the max-combination rule are sometimes very bad 
(often 9 > 1) and are omitted from some figures. This behaviour can be understood by 
observing that by maximizing over a large set of different classifiers for both classes 
large posterior probabilities might be obtained. After normalization (the sum of proba- 
bilities should be one) the confidences generally tend in the direction of p = 0.5, which 
causes a large en'or contribution. 

It is interesting to see what the classifier combining rules do. In our experiments 
we combined a set of different and not so different classifiers. So averaging and multi- 
plying posterior probabilities are theoretically not applicable as they are based on inde- 
pendence assumptions, see [4]. This also holds for the medium, being a robust 
estimator of the mean. This combination rule, however, does relatively well. The 
minimum and the maximum rule are in fact the best rules for a situation of dependent 
classifiers. How to combine the input confidences to a reliable output confidence 
should be studied further. 

Table 1. Classification errors, confidences and confidence errors for classifiers 
trained with 20 objects/class. 

2D Gauss 10D Gauss Blood 

Method e q p e q p e q 9 

NM 0.220 0.177 0,30 0. '315" 0]'207 0.16 0.102 0.083 0.31 

Fish 0.176 [0.133 0.25 0.068 0.053 0.28 0.130 0.090 0.19 

BayU 0.142 0.091 0.14 0.071 0.056 0.29 0.066 0.065 0.49 

BayQ 0.042 0,035 0 . 3 3  01100 0.079 0.29 01071 0.066 0.43 

1-NN 0.076 0.055 0.22 0.177 0.169 O . 4 5  0.175 0.141 0.31 

k-NN 0.086 0.071 0.33 0.173 0.139 0.30 0.119 0.116 0.48 

Tree 0.125 0.078 0.12 0.106 0.083 0.29 0.094 0.119 0.76 

Parz 0.092 0.061 0.16 0.141 0.110 0.28 0.095 0.092 0.47 

BPXNC 0.097 0.101 0.54 0.081 0.062 0.26 0.125 0.098 0.29 

LMNC 0.419 0.346 0.33 0.441 0.329 0.25 0.376 0.313 0.33 

Max 0.075 0,156 1.58 0.090 0.166 1.34 0.191 0.157 0.32 

Meal 0,082 0.060 0.23 0,082 0.063 0.27 0.076 01075 0.48 

Min 0.075 0.058 0,27 0.090 0.071 0.29 0,191 0.150 0.29 

Mean 0.076 0.071 0.43 0.080 0,079 0.49 0.074 0.085 0.65 

Prod 0,071 0,050 0.21 0.081 0.059 0.22 0,110 0.106 0.46 
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5 Conclusion 

The main purpose of our study was to show that classifiers can be more inform- 
ative than generating class labels. Classifier conditional posterior probabilities can be 
consistently computed for almost any classifier and can be used for obtaining classifi- 
cation confidences, rejects and as inputs for classifier combination rules. The estima- 
tion of posterior probabilities for the outputs of combination rules, in particular the 
maximum rule, should be further investigated. 

6 Acknowledgment 

This work is supported by the Foundation for Applied Sciences (STW) and the 
Dutch Organization tbr Scientific Research (NWO). 

7 References 

[1]R.P.W. Duin, On the choice of the smoothing parameters for Parzen estimators of 
probability density functions, IEEE Trans. Computers, vol. C-25, no. 11, 1976, 
Nov., 1175-1179. 

[2]J.R. Quinlan, Induction of decision trees, Machine Learning, vol. 1, pp. 81 - 106, 
1986. 

[3]J.R. Quinlan, Simplifying decision trees, Int. J. Man - Machine Studies, vol. 27, pp. 
221-234, 1987. 

[4]J. Kittler, M. Hater, R.P.W. Duin, and J. Matas, On Combining Classifiers, IEEE 
Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, 1998. 

[5]D.MJ. Tax, M. van Breukelen, R.P.W. Duin, and J. Kittler, Combining multiple 
classifiers by averaging or by multiplying?, submitted, september 1997. 

[6]J. A. Anderson, Logistic discrimination, in: P. R. Krishnaiah and L. N. Kanal (eds.), 
Handbook of Statistics 2: Classification, Pattern Recognition and Reduction of 
Dimensionality, North Holland, Amsterdam, 1982, 169--191. 

[7]R.P.W. Duin, PRTools, A Matlab toolbox for pattern recognition, version 2.1, 1997, 
see ftp://ph.tn.tudelft.nl/pub/bob 

[8]A. Hoekstra, S.A. Tholen, and R.P.W. Duin, Estimating the reliability of neural 
network classifiers, in: C. von der Malsburg, W. von Seelen, J.C. Vorbruggen, 
B. Sendhoff (eds.), Artificial Neural Networks - ICANN'96, Proceedings of the 
1996 International Conference on Artificial Neural Networks (Bochum, 
Germany, July 16-19, 1996), 53 - 58. 

[9]A. Hoekstra, R.P.W. Duin, and M.A. Kraaijveld, Neural Networks Applied to Data 
Analysis, in: C.T. Leondes (eds.), Neural Network Systems Techniques and 
Applications, Academic Press, in press. 

[10]Cox, L.H., M.M. Johnson, K. Kafadar (1982), Exposition of statistical graphics 
technology, ASA Proceedings Statistical Computation Section, page 55-56. 



618 

5 training objects / class 

1 t 0.8 

0.0.6 

1 3 5 

0.8 

0,6 
0. 

0 , 4  

0 . 2  

1 

0.8 

7 11 15 

0- 0.6 

0.4 

0.2 

10 training objects / class 

20 training objects / class 

3 5 7 11 15 

50 training objects / class 

0 . 8  

0 , 6  
Q_ 

0,4 

0.2 _ I  / 

0 
1 3 5 7 11 15 3 5 7 11 15 

number of neighbors in k -NN number of neighbors in k - N N  

Fig. 2, Normalized confidence error versus numbers of neighbors in k-NN rule for the 
two estimators (4) and (5) for dataset a. 
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Fig. 4. Scatter plots for the classification error versus normalized confidence errors for the three 
datasets and for sample sizes 5 and 50 objects per class (note the different scaling of the right plot 
of dataset c). Figures are slightly adapted to improve readability. 


