
An Approximate Nearest Neighbours Search Algorithm
Based on the Extended General Spacefilling Curves

Heuristic

Juan-Carlos P6rez 1 Enrique Vidal 2

I Dpt. de Inform~tica de Sistemas y ComputAdores (DISCA), Universidad Polit6cnica
de Valencia. C. de Vera s/n 46071, Spain. jcperez@disca.upv.es

z Dpt. de Sistemas Inform~iticos y Computaci6n (DSIC) Universidad Polit~cnica de
Valencia. C. de Vera s/n 46071, Spain. evidal@iti.upv.es

Abstract

In this paper, an algorithm for approximate nearest neighbours search in vector spaces is
proposed. It is based on the Extended General Spacefilling Curves Heuristic (EGSH). Under
this general scheme, a number of mappings are established between a region of a
multidimensional real vector space and an interval of the real line, and then for each mapping
the problem is solved in one dimension. To this end, the real values that represent the
prototypes are stored in several ordered data structures (e.g. b-trees). The nearest neighbours
of a test point are then efficiently searched in each structure and placed into a set of candidate
neighbours. Finally, the distance from each candidate to the test point is measured in the
original multidimensional space, and the nearest one(s) are chosen.

1. Introduction

The search for the nearest neighbours to a given point from a set of N prototypes in a
real vector space of dimension n, is a task common to a large number of
applications. In the field of Pattern Recognition this problem appears frequently, for
instance in the estimation of probability densities using the k-nearest neighbours rule
[Fukunaga,90]; in some methods of multivariate function learning [Poggio,90]
[Omohundro,90]; in most clustering techniques in vector spaces, also known as
vector quantization [Jain,88]; etc. A large (and increasing) number of other problems
inside and outside that field can benefit from an efficient method for the search of
nearest neighbours.

The temporal cost of the trivial solution to this problem, an exhaustive search in
the set of prototypes, is in O(nN) if we assume, as we will from now on, that the
temporal cost of the distance computation is proportional to the dimension of the
space, n. The spatial cost is also in O(nN), since this method does not require the
construction of any special data structure. When N is very large, the exhaustive
search method can be impractical.

A number of algorithms able to perform more efficiently than the exhaustive
search have been proposed. The ideas applied to obtain lower temporal costs are
diverse. Most algorithms for vector spaces [Friedman,77], [Kim,86], [Yao,85] are
directly based on the construction of kd-trees. Another populated class of techniques
is composed by those which take advantage of certain properties of the metrics,
particularly the Triangle Inequality, to readily discard prototypes that cannot
possibly be the nearest to the test point, therefore limiting the extension of the

698

search. Many of these methods do not even require that the objects be represented in
a real vector space. Among them, we can cite the ones presented in [Sethi,81],
[Kalantari,83], [Vidal,86] and [Shasha,90], Finally, some algorithms cannot be
classified into any of these groups and propose methods based on different concepts
[Friedman,75], [Yunck,76], [Bentley,80] and [Murphy,90].

In many cases, an absolute guarantee of finding the real nearest neighbour to the
test point is not necessary. Owing to that, some algorithms of approximate nearest
neighbour search have been proposed [Miclet,83], [Bern,93]. The method presented
here falls into this category. In [Perez,94] and [Perez,97], a review of all the cited
algorithms is presented, with special emphasis on the costs involved and in the
applicability of the different techniques.

2. The Extended General Spacefilling Heuristic

In [Bartholdi,88], the General Spacefilling Heuristic is presented as a generic
procedure, useful in many combinatorial optimization problems where the data-set is
composed by points in a multidimensional space and the solution involves the
preservation of some notion of proximity among them. The method consists on
mapping each point into the real line (using a n-D to 1-D mapping based on the
notion of spacefilling curve) to get an easier or more efficiently tractable problem in
one dimension. Once solved the reduced problem, the points, along with the
solutions found, are returned to the original space.

Spacefilling Curves, also known as Peano Curves, are a class of fractal curves
originally described by G. Peano and D. Hilbert more than a century ago
[Peano,1890], [Hilbert,1891]. Simply stated, a Spacefilling Curve is a recursive
structure that completely fills a region S with positive content in N n. This means that
every point in S belongs to the curve. In [Bartholdi,88] or in [Perez,94] and
[Perez,97], formal definitions of a spacefilling curve are presented, along with the
details of the computation of Sierpinski's Spacefilling Curve, gt(t), introduced in
[Sierpinski, 1912].

The continous nature of spacefilling curves confer quite remarkable properties
to mappings based on them. Of particular interest here is the preservation of a
notion of proximity, such that any pair of points which are close in the Real Line are
guaranteed to come from nearby points in the original (multidimensional) space.
Unfortunately, the converse is not true in general, since neighbours in the space do
not always end as neighbours in the Real Line (and, additionally, distant points in
the space are not necessarily mapped into distant points in the Real Line). Details on
this and other properties of spacefilling curves, as well as a brief survey of their
applications appear in [Perez,94] and [Perez,97].

The first instantiation of the General Spacefilling Heuristic is proposed by its
authors [Bartholdi,83], and deals with finding an approximate solution to the
Travelling Salesman Problem. In that work and in [Imai,86], the same method is
used to obtain an (also approximate) solution to the Minimum-Weight Matching
Problem on the plane, defining the pairs of matching points as the consecutive pairs
of points in the Travelling Salesman Path.

The methodology described is simple and extremely fast in ger~eral but, as a
consequence of the fact that the spacefilling mapping function, gt", cannot map
consistently any connected region of the space into a (connected) interval of the Real
Line, often gives rise to intolerable discontinuities in the resultant mapping. These

699

discontinuities are specially remarkable in certain areas which we will call
conflictive regions.

As a solution to that problem, the Extended General SpaeefiUing Heuristic
was proposed in [Perez,94], [Perez,97] and [Perez,98]. It consists, in essence, on
applying the spacefilling mapping r times, where r is a constant to be defined later.
Each application of the mapping is fed with the original data affected by a distinct
transformation. As a consequence, the areas introducing major distortions (the most
conflictive regions) can affect points in different regions of the original
representation space. Each tandem transformation-mapping will establish a distinct
unidimensional submodel of the problem. All these submodels, adequately
combined, will configure the final model.

The sequence of operations that should be used to apply this method to a set of N
n-dimensional points is shown in the following algorithm:

1- Normalize the set of points to fit into the unit Hypercube [0, i] n.

2- For each submodel i:

2.1- For each n-dimensional point of the problem, apply transformation T i.

2.2-For each transformed point, map it into [0,1], applying a spacefilling
mapping (for instance, ~g-1).

2.3- Solve the unidimensional problem.

4- Combine the solutions of the different submodels to obtain a global solution. In
some cases, this combination can include a weight factor for each partial
solution, according to a measure of its quality.

The number of submodels r can be as high as necessary to obtain a satisfactory
solution to the problem. It seems reasonable to tie proportionally this parameter to
the dimension of the input space n. Using, for instance, r=n submodels, n real values
are obtained (one per submodel) from input vectors with n components. This
suggests a certain degree of conservation of the original information. Values of r=2n
or r=3n are also typical in cases where better results are needed and values of r=n/2,
r=rd3, etc. can be used if lower costs are more important.

In [Perez,98], an application of the heuristic to learning of multivariate function
mappings based on examples is presented, and other possible applications are
suggested.

3. Approximate Nearest Neighbour Search Algorithm

The algorithm proposed is a direct application of the Extended General Spacefilling
Heuristic. The instantiation of that general scheme is as follows:

- T h e vectors received by the first stage of the extended heuristic
(normalization and transformations) are directly the prototypes.

-Th e unidimensional values that correspond to each submodel of the
extended heuristic are sorted and stored into a vector, inserted into a b-tree,
or inserted into an indexed table.

700

In the operating phase (when a test point p is presented to the system), the
usual method of mapping the point onto the Real Line is employed, with a
different transformation for each of the r submodels. The b nearest
neighbours of the unidimensional value in the Real Line, for each submodel,
can be readily found using a dichotomic search in the vector, a conventional
search in the b-tree, in O(log N + b), or even a direct access operation to a
table indexed by those values, in O(b). The union of the r sets of b
neighbours obtained from the r submodels produces a set of size <_rb wich
will be exhaustively searched to find the nearest neighbour to p in the
original muItidimensional space using the desired distance function in that
space.

More formally, given a set of N prototypes x i~R n ISi~N, the preprocessing is as
follows:

-Defined a number of submodels, r, compute for each submodel the N
transformed and normalized vectors:

t x i j=Tj (x i) , l < i < N , l < j < r .

where Tj(.) represents a sequence of operations rotation-normalization-
transformation defined in the heuristic.

- C o m p u t e the unidimensional values associated to those vectors, via a
Spacefilling Mapping:

w (,) I< i<_N, l < j < r . P,s = IV xo , - -

- For j in [t, 2 r], sort each set of real values [PIj, P2j,...,P~[i] in ascending
order or insert them into a suitable data structure with efficient search
capabilities.

Given a test vector x ~ N n, which nearest neighbour is to be found, the operating
phase consists on the following steps:

- Normalize and transforrm x for each submodel:

t xj : rj (x), t_<j r.

- C o m p u t e the corresponding unidimensional values using the chosen
spacefilling curve:

- I (,) l < j < r . p j = lit X: ,

- For j in [1, r], locate via a dichotomic search or oher suitable method the b
nearest neighbours of pj in [PU' P2,j PNj}. The distance in the line is
defined as a cyclic metric: A(p,p')=min [Ip-p'I,1-[p-p'I]. Actualize the set B,

701

initially empty, with the union of all the sets of b points found for each
submodelj.

- Compute the distance in the multidimensional space using the originally
considered metric between p and each element in B. and select the nearest
neighbour.

Obviously, an extension to the search of the k nearest neighbours is trivial. It is only
necessary to modify the last step of the operating phase to find the k nearest
prototypes.

The preprocessing cost is in O(nN + N IogN) per submodel, where the first term
corresponds to the normalization and the transformations, and the second one is the
cost of the spacefilling mapping and the sort of the values in the Real Line or the
insertion into a b-tree. The number of submodels r has been consider~ed proportional
to the dimension, n. Therefore, the total preprocessing cost is in O(n'N + nN logN).
The asymptotic spatial cost is not higher than that necessary to store the original
points, namely in O(nN). If an indexed table is used instead to store the points in
each submodel, using the real value as an index, then the spatial cost depends on the
number of pre-allocated buckets necessary to avoid collisions, which cannot be
easi~ estimated in general, but the average preprocessing cost is reduced to be in
O(n-N), since insertion can be done in constant average time.

The search of the nearest neighbour to a previously unknown point (operating
phase) involves a cost per submodel in:

- O(n) for the normalization and transformation of the point.
- 0(1) for the computation of the spacefilting mapping (given a suitable

limitation to a constant in the maximum dimension of the computation).
- O(logN) for the search if a sorted vector or a b-tree is used, or 0(1) if an

indexed table is employed.
- O(nb) for the computation of the distances from the point to the b nearest

neighbours in the Real Line, and the selection of the nearest one.

The temporal cost is therefore, considering a number of submodels r proportional to
n and a constant b, in O(n- + n logN) for a sorted vector or a b-tree, or O(n) for an
indexed table. Of course, the search in the different submodels can be very easily
performed in parallel, even using weakly coupled processors such as networked
machines, obtaining then a search cost in O(n + logN) for a sorted structure or in
O(n) for an indexed one.

In applications with very large data-sets, where the need for prototypes to be
inserted and deleted at any time exists and the use of disk-based storage is
mandatory, the best data structures for the submodels are the b-trees. In those cases,
the retrieval of the b nearest real values in each submodel can be done very
efficiently even for large values of b, and the search in all submodels can be
performed in parallel if each tree is stored in a different disk. This can be true even
for single processor configurations, since the seek times of the succesive leaves of
the b-trees are the dominant factor in the total search time.

7 0 2

4. Experiments

In order to establish the influence of the number of prototypes N and the
dimensionality of the space n in the results of the method, a number of experiments
have been performed. In the2first experiments, a set of points drawn from a uniform
random distribution in [0,1] was used, with values of N in [8,000 ... 700,000] and a
test set size of N'=IO00 points. In figure I, the results are shown. No decrease of the
search effectiveness due to the size of the set of prototypes is evidenced.

For each test point, a list of prototypes ordered from smaller to larger distance to
the test point has been constructed (through exhaustive search) and the sequence
number, in that list, of the point selected as the nearest neighbour by the approximate
method, has been determined. If repeated values existed in the sequence, the number
chosen would be, obviously, the smallest. We will call this number rank number of
the approximate point. The average rank number, as welt as the worst rank number,
for the N' test points, have been calculated for each experiment. The ranges and
mean values of these terms, for sets of 4 experiments with different random
initializations, have been represented in the figures.

"ra

<

109
t,os-
t,OT-:
1 , 0 6 :

i t,05 i
1 , o 4 : . ,

1 , 0 3 , , , ' l i ~'"

500 1000 10000 100000 1000000

Number of prototypes

=.

£

I 0

8~

7 ,

6 ,

5 ,

4 .

3

500 I000

. o , ° , 4 ° ~ •

° ' , "; " :

:

10000 100000 1000000

Number of prototypes

Figure 1: Average and worst rank number of the approximated nearest neighbour found with
the proposed method (a value of 1 means finding the nearest neighbour, 2 means finding the
second, etc.) against the size of the set of prototypes, in a uniform random distribution in n=2
dimensions, with r=2 and b=4. The average values are shown, along with the maximum and
minimum among four experiments performed using different random parameters for the
transformations.

In the first experiment, the value assigned to b was 4 in order to make the error rates
larger, since in such a low dimension the errors obtained using larger values of b are
too low to be useful when represented in the graphs. In the rest of the experiments, a
value of b=16 was used.

To check if this behaviour is retained in spaces of higher dimensionality, the
previous experiments have been repeated in an 8-dimensional space. The values of N
are in this case in [8000,128000]. As can be seen in figure 2, the average and worst
rank numbers increase linearly with a low slope as the number of prototypes grows
(note the high resolution of the ordinate axis and the logarithmic scale of the
abscises).

A key factor in the cost of many fast nearest neighbour search algorithms is the
dimensionatity of the space where the elements are defined, n. The average cost of
most of them grows steeply with the dimension n. It has also been noted that the
accuracy of the approximate search algorithms drops very quickly as n gets larger.

703

To evaluate the effect of the dimensionality in our method, a number of experiments
were performed. The number of prototypes was fixed at N=25000. The test set was
composed of N'=1000 points.

In figure 3 the results are shown, along with linear least squares fits (notice that,
since the controlled variable is represented in a logarithmic scale, a linear fit appears
as an exponential function). The linear functions obtained are defined by the
express ions Neighbavg (n) = 0.94 + 0.042 n, for the average neghbour, and
Neighbworst(n) = 4.16 + 0.53 n, for the worst neighbour. These equations show
small slopes, which means that the dimension of the space has a only a moderate
influence on the quality of the results.

1,25

1,21.
1,19. •

1,17,

1,15-.'
1,13: ".~

1,09.
< 1,07, -..: < :..-.:

L05 I I , 1 !

Number of prototypes "

8 ~ 5 -

.~ 7,5-

6,5
o

• ~ 5,5

4,5

3,5

::::::::::::::::::::::::::::::

. . . . I , , , i 4 l

o o -
Number of prototypes

F igu re 2: Average and worst rank number of the approximated nearest neighbour for a
uniform random distribution in n=8 dimensions, with r=8 and b=16. The average values are
shown, along with the maximum and min imum among four experiments performed using
different random parameters for the transformations.

3 ~ 5 - -

3

2,5

=~ 2

e0
1,5

<

45.

40.

35.

~ 3 0 .
e-,

25.

~- 20,

~ 15.

lo-".
~: 5.

0 = I I B I I I I I I I I I I t I I I 1

lo 100
Dimensionality

• !!!i
, , = i i | = | i i J • i i = , l I

10 100
Dimensionality

F igure 3" Average and worst rank number of the approximated nearest neighbour in uniform
random distributions with r=n and b=16. The average values are shown, along with the
max imum and m i n i m u m among four exper iments performed using different r andom
parameters for the rotations and transformations. The thin line corresponds to a linear least
squares fit of the data.

704

An alternative to a fixed b (value of the number of neighbours retained along the real
line), is making it depend linearly on the dir~ension n. In this cgse, the asymptotic
costgof a sear@ operation increases from O(n" + n logN) to O(nJ+ n logN) or from
O(n ~) to O(nO). The results taking b=n, and keeping the same conditions as in the
previous experiments are shown in figure 4.

1,6 : :

.~ 1,5- i !

............... ! ::

1,3: i :

~ 1,2: . !

<

I
m

' ' ' ' i

I00
Dimensionality

15 ::

~ l i r

94

7 ~ ~ .afe:'L'7........~.. i

~5
3 1 i i

I 10 I00

Dimensionality

Figure 4: Results in the same conditions of figure 3, but taking b=n. The thin line
corresponds to a logarithmic least squares fit of the data.

In this case, the growth of the average and worse rank numbers is no longer linear,
but logarithmic: Neighavg(n) = 0.94 + 0.135 In(n) and Neighworst(n) = 4.25 + 1.13
In(n).

To illustrate the performance of the method in a real task, the times of a nearest
neighbour search using the approximate algorithm are compared to the exahustive
search in figure 5. Four submodels were used in an 8-dimensional space, with b=16.

'T I Exhaost,ve search

8000 14000 20000

Number of prototypes

Figure 5: Times of exhaustive and approximate searches in a 300 Mhz Pentium II computer.

A more complete set of experiments can be found in [Perez,94] and [Perez,97],
where some tests comparing the classification errors incurred using the exhaustive k-
nearest neighbours rule and the approximate search algorithm do not show
significative differences for a surprisingly wide range of parameter settings. This is
in agreement with the recent results of [Skubalska,96] where a single spacefilling
mapping is used in several k-nearest neighbour classification tasks, with error rates
similar to the exhaustive search method.

705

5. Conclusions

The search of the nearest neighbours to a point in a set of prototypes in a vector
space is a key problem in many disciplines, due to its theoretical appeal and its
practical applications. The results presented here are very promising, and tests on the
performance of the proposed method on real applications are being carried out,
showing a real practical value. These applications include optical character
recognition, and identification using fingerprints in a large database. In every case, a
huge reduction of the actual search time has been achieved at the expense of a small
loss of precision.

The method proposed is easy to adapt to the demands of most tasks, whether
disk-based or memory resident, with a fixed data-set or with a need of frequent
insertions and deletions, etc, and a specially good behaviour is being observed in
classification applications where very large sets of prototypes are involved. In those
cases, the time savings are especially important and the size of the manageable data-
sets are enlarged many orders of magnitude.

6. References

Bartholdi, J.J. ; Platzman, L.K. (1983) "A Fast Heuristic Based on Spacefilling
Curves for Minimum-Weight Matching in the Plane", Information Processing
Letters, 17. pp. 177-180.

Bartholdi, J.J. ; Platzman, L.K. (1988) "Heuristics Based on Spacefilting Curves
for Combinatorial Problems in Euclidean Space", Management Science, 34.
pp. 291-305.

Bentley, J.L. ; Weide, B.W. ; Yao, A.C. (1980). "Optimal Expected Time
Algorithms for Closest Point Problems", ACM Transactions on Mathematical
Software, Vol. 6, pp. 563-580.

Bern, M. (1993). "Approximate Closest-Point Queries in High Dimensions",
Pattern Recognition, Vot. 45, pp. 95-99.

Fukunaga, K. ; Narendra, P.M. (1975). "A Branch and Bound Algorithm for
Computing k-Nearest Neighbors", IEEE Transactions on Computers, Vol.
24, No. 7, pp. 750-753.

Friedman, J.H. ; Baskett, F. ; Shustek, L.J. (1975). "An Algorithm for Finding
Nearest Neighbors", IEEE Tr. on Computers, Vol. 24, No. 10, pp. 1000-1006.

Friedman, J.H. ; Bentley, J.L. ; Finkel, R.A. (1977). "An Algorithm for Finding
Best Matches in Logarithmic Expected Time", ACM Transactions on
Mathematical Software, Vol. 3, No. 3, pp. 209-226.

Fukunaga, K. (1990). "Introduction to Statistical Pattern Recognition", Academic
Press, San Diego, CA.

Hilbert, D. (1891). "Ueber die steitge Abbildung einer Linie auf ein
Flaechenstueck", Math. Ann, Vol. 38, pp. 459-460.

Imai, H. (1986). "Worst-Case Analysis for Planar Matching and Tour Heuristics
with Bucketing Techniques and Spacefilling Curves", Journal of the
Operations Research Society of Japan, Vol. 29, No. 1, pp. 43-67.

706

Jain, A.K. ; Dubes, R.C. (1988). "Algorithms for Clustering Data", Prentice Hall.

Kalantari, I. ; McDonald, G. (1983). "A Data Structure and an Algorithm for the
Nearest Point Problem", IEEE Trans. on Software Engineering, Vol. 9, No. 5,
pp. 631-634.

Kim, B.S. ; Park, S.B. (1986). "A Fast k-Nearest Neighbor Finding Algorithm
Based on the Ordered Partition", IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 8, No. 6, pp. 761-766.

Miclet, L. ; Dabouz, M. (1983). "Approximative Fast Nearest Neighbor
Recognition", Pattern Recognition Letters', Vol. 1, No. 5/6, pp. 277-285.

Murphy, O.J. ; Selkow, S.M. (I990). "Finding Nearest Neighbors with Voronoi
Tessellations", Information Processing Letters, Vol. 34, pp. 37-41.

Omohundro, S.M. (1990). "Geometric Learning Algorithms", Physica D, 42.
pp.307-321.

Peano, G. (1890). "Sur une Courbe qui Remptit Toute une Aire Plane", Math. Ann.,
Vol. 36, pp. 157-160.

P6rez, J.C. ; Vidal, E. (1994). "M6todos Geom6tricos de Aprendizaje
Supervisado",.Ph.D. Thesis (In spanish) DSIC. Univ. Polit~cnica de Valencia.

P6rez, J.C. ; Vidal, E. (1997). "The Extended General Spacefilling Curves
Heuristic" Technical Report, Dept. DISCA. Universidad Polit6cnica de
Valencia. http://www.disca.upv.es

P6rez, J.C. ; Vidal, E. (1998). "The Extended General Spacefilling Curves
Heuristic" Submitted to ICPR-98.

Poggio, T. ; Girosi, F. (1990). "Networks for Approximation and Learning",
Proceedings of the IEEE, Vol.78, no.9. pp.1481-1497.

Sethi, I.K. (1981). "A Fast Algorithm for Recognizing Nearest Neighbors", IEEE
Transactions on Systems, Man and Cybernetics, Vol. 1 t, No. 3, pp. 245-248.

Shasha, D. ; Wang, T. (i990). "New Techniques for Best-Match Retrieval", ACM
Transactions on Information Systems, Vol. 8, No, 2, pp. 140-158.

Sierpinski, M.W. (1912). "Sur une Nouvelle Courbe Continue qui Remplit Toute
une Aire Plane", Bull. Acad. Sci. de Cracovie, pp. 462-478.

Skubalska, E. ; Krzyzak, A. (1996). "Fast k-NN Classification Rule Using Metric
on Space-Filling Curves", Proceedings oflCPR-96, pp. 121-I25.

Vidal, E. (1986). "An Algorithm for Finding Nearest Neighbours in
(Approximately) Constant Average Time", Pattern Recognition Letters, Vol.
4, pp. 333-344.

Yao, A.C. ; Yao, F.F. (1985). "A General Approach to d-dimensional Geometric
Queries", Proceedings of the 17th Annual ACM Symposium on the Theory of
Computing, 163-168.

Yunck, T.P. (I976). "A Technique to Identify Nearest Neighbors", IEEE
Transactions on Systems, Man, and Cybernetics', Vol. 6, No. 10, pp. 678-683.

