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Abstract 

In this paper, an algorithm for approximate nearest neighbours search in vector spaces is 
proposed. It is based on the Extended General Spacefilling Curves Heuristic (EGSH). Under 
this general scheme, a number of mappings are established between a region of a 
multidimensional real vector space and an interval of the real line, and then for each mapping 
the problem is solved in one dimension. To this end, the real values that represent the 
prototypes are stored in several ordered data structures (e.g. b-trees). The nearest neighbours 
of a test point are then efficiently searched in each structure and placed into a set of candidate 
neighbours. Finally, the distance from each candidate to the test point is measured in the 
original multidimensional space, and the nearest one(s) are chosen. 

1. Introduction 

The search for the nearest neighbours to a given point from a set of N prototypes in a 
real vector space of dimension n, is a task common to a large number of 
applications. In the field of Pattern Recognition this problem appears frequently, for 
instance in the estimation of probability densities using the k-nearest neighbours rule 
[Fukunaga,90]; in some methods of multivariate function learning [Poggio,90] 
[Omohundro,90]; in most clustering techniques in vector spaces, also known as 
vector quantization [Jain,88]; etc. A large (and increasing) number of other problems 
inside and outside that field can benefit from an efficient method for the search of 
nearest neighbours. 

The temporal cost of  the trivial solution to this problem, an exhaustive search in 
the set of prototypes, is in O(nN) if we assume, as we will from now on, that the 
temporal cost of the distance computation is proportional to the dimension of the 
space, n. The spatial cost is also in O(nN), since this method does not require the 
construction of any special data structure. When N is very large, the exhaustive 
search method can be impractical. 

A number of algorithms able to perform more efficiently than the exhaustive 
search have been proposed. The ideas applied to obtain lower temporal costs are 
diverse. Most algorithms for vector spaces [Friedman,77], [Kim,86], [Yao,85] are 
directly based on the construction of kd-trees. Another populated class of techniques 
is composed by those which take advantage of certain properties of  the metrics, 
particularly the Triangle Inequality, to readily discard prototypes that cannot 
possibly be the nearest to the test point, therefore limiting the extension of the 
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search. Many of these methods do not even require that the objects be represented in 
a real vector space. Among them, we can cite the ones presented in [Sethi,81], 
[Kalantari,83], [Vidal,86] and [Shasha,90], Finally, some algorithms cannot be 
classified into any of these groups and propose methods based on different concepts 
[Friedman,75], [Yunck,76], [Bentley,80] and [Murphy,90]. 

In many cases, an absolute guarantee of finding the real nearest neighbour to the 
test point is not necessary. Owing to that, some algorithms of approximate nearest 
neighbour search have been proposed [Miclet,83], [Bern,93]. The method presented 
here falls into this category. In [Perez,94] and [Perez,97], a review of all the cited 
algorithms is presented, with special emphasis on the costs involved and in the 
applicability of the different techniques. 

2. The Extended General Spacefilling Heuristic 

In [Bartholdi,88], the General Spacefilling Heuristic is presented as a generic 
procedure, useful in many combinatorial optimization problems where the data-set is 
composed by points in a multidimensional space and the solution involves the 
preservation of some notion of proximity among them. The method consists on 
mapping each point into the real line (using a n-D to 1-D mapping based on the 
notion of spacefilling curve) to get an easier or more efficiently tractable problem in 
one dimension. Once solved the reduced problem, the points, along with the 
solutions found, are returned to the original space. 

Spacefilling Curves, also known as Peano Curves, are a class of fractal curves 
originally described by G. Peano and D. Hilbert more than a century ago 
[Peano,1890], [Hilbert,1891]. Simply stated, a Spacefilling Curve is a recursive 
structure that completely fills a region S with positive content in N n. This means that 
every point in S belongs to the curve. In [Bartholdi,88] or in [Perez,94] and 
[Perez,97], formal definitions of a spacefilling curve are presented, along with the 
details of the computation of Sierpinski's Spacefilling Curve, gt(t), introduced in 
[Sierpinski, 1912]. 

The continous nature of spacefilling curves confer quite remarkable properties 
to mappings based on them. Of particular interest here is the preservation of a 
notion of proximity, such that any pair of points which are close in the Real Line are 
guaranteed to come from nearby points in the original (multidimensional) space. 
Unfortunately, the converse is not true in general, since neighbours in the space do 
not always end as neighbours in the Real Line (and, additionally, distant points in 
the space are not necessarily mapped into distant points in the Real Line). Details on 
this and other properties of spacefilling curves, as well as a brief survey of their 
applications appear in [Perez,94] and [Perez,97]. 

The first instantiation of the General Spacefilling Heuristic is proposed by its 
authors [Bartholdi,83], and deals with finding an approximate solution to the 
Travelling Salesman Problem. In that work and in [Imai,86], the same method is 
used to obtain an (also approximate) solution to the Minimum-Weight Matching 
Problem on the plane, defining the pairs of matching points as the consecutive pairs 
of points in the Travelling Salesman Path. 

The methodology described is simple and extremely fast in ger~eral but, as a 
consequence of the fact that the spacefilling mapping function, gt", cannot map 
consistently any connected region of the space into a (connected) interval of the Real 
Line, often gives rise to intolerable discontinuities in the resultant mapping. These 
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discontinuities are specially remarkable in certain areas which we will call 
conflictive regions. 

As a solution to that problem, the Extended General  SpaeefiUing Heuristic 
was proposed in [Perez,94], [Perez,97] and [Perez,98]. It consists, in essence, on 
applying the spacefilling mapping r times, where r is a constant to be defined later. 
Each application of the mapping is fed with the original data affected by a distinct 
transformation. As a consequence, the areas introducing major distortions (the most 
conflictive regions) can affect points in different regions of the original 
representation space. Each tandem transformation-mapping will establish a distinct 
unidimensional submodel of the problem. All these submodels, adequately 
combined, will configure the final model. 

The sequence of operations that should be used to apply this method to a set of N 
n-dimensional points is shown in the following algorithm: 

1- Normalize the set of points to fit into the unit Hypercube [0, i]  n. 

2- For each submodel i: 

2.1- For each n-dimensional point of the problem, apply transformation T i. 

2.2-For each transformed point, map it into [0,1], applying a spacefilling 
mapping (for instance, ~g-1). 

2.3- Solve the unidimensional problem. 

4- Combine the solutions of the different submodels to obtain a global solution. In 
some cases, this combination can include a weight factor for each partial 
solution, according to a measure of its quality. 

The number of submodels r can be as high as necessary to obtain a satisfactory 
solution to the problem. It seems reasonable to tie proportionally this parameter to 
the dimension of the input space n. Using, for instance, r=n submodels, n real values 
are obtained (one per submodel) from input vectors with n components. This 
suggests a certain degree of conservation of the original information. Values of r=2n 
or r=3n are also typical in cases where better results are needed and values of r=n/2, 
r=rd3, etc. can be used if lower costs are more important. 

In [Perez,98], an application of the heuristic to learning of multivariate function 
mappings based on examples is presented, and other possible applications are 
suggested. 

3. Approximate Nearest Neighbour Search Algorithm 

The algorithm proposed is a direct application of the Extended General Spacefilling 
Heuristic. The instantiation of that general scheme is as follows: 

- T h e  vectors received by the first stage of the extended heuristic 
(normalization and transformations) are directly the prototypes. 

-Th e  unidimensional values that correspond to each submodel of the 
extended heuristic are sorted and stored into a vector, inserted into a b-tree, 
or inserted into an indexed table. 
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In the operating phase (when a test point p is presented to the system), the 
usual method of mapping the point onto the Real Line is employed, with a 
different transformation for each of the r submodels. The b nearest 
neighbours of the unidimensional value in the Real Line, for each submodel, 
can be readily found using a dichotomic search in the vector, a conventional 
search in the b-tree, in O(log N + b), or even a direct access operation to a 
table indexed by those values, in O(b). The union of the r sets of b 
neighbours obtained from the r submodels produces a set of size <_rb wich 
will be exhaustively searched to find the nearest neighbour to p in the 
original muItidimensional space using the desired distance function in that 
space. 

More formally, given a set of N prototypes x i~R n ISi~N, the preprocessing is as 
follows: 

-Defined a number of submodels, r, compute for each submodel the N 
transformed and normalized vectors: 

t x i j=Tj (x i ) ,  l < i < N ,  l < j < r .  

where Tj(.) represents a sequence of operations rotation-normalization- 
transformation defined in the heuristic. 

- C o m p u t e  the unidimensional values associated to those vectors, via a 
Spacefilling Mapping: 

w ( , )  I< i<_N,  l < j < r .  P,s = IV xo , - - 

- For j  in [t, 2 .... r], sort each set of real values [PIj, P2j,...,P~[i] in ascending 
order or insert them into a suitable data structure with efficient search 
capabilities. 

Given a test vector x ~ N  n, which nearest neighbour is to be found, the operating 
phase consists on the following steps: 

- Normalize and transforrm x for each submodel: 

t xj : rj (x), t_<j r. 

- C o m p u t e  the corresponding unidimensional values using the chosen 
spacefilling curve: 

- I ( , )  l < j < r .  p j = lit X: , 

- For j in [1, r], locate via a dichotomic search or oher suitable method the b 
nearest neighbours of pj in [PU' P2,j ..... PNj}. The distance in the line is 
defined as a cyclic metric: A(p,p')=min [Ip-p'I,1-[p-p'I]. Actualize the set B, 
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initially empty, with the union of all the sets of b points found for each 
submodelj. 

- Compute the distance in the multidimensional space using the originally 
considered metric between p and each element in B. and select the nearest 
neighbour. 

Obviously, an extension to the search of the k nearest neighbours is trivial. It is only 
necessary to modify the last step of the operating phase to find the k nearest 
prototypes. 

The preprocessing cost is in O(nN + N IogN) per submodel, where the first term 
corresponds to the normalization and the transformations, and the second one is the 
cost of the spacefilling mapping and the sort of the values in the Real Line or the 
insertion into a b-tree. The number of submodels r has been consider~ed proportional 
to the dimension, n. Therefore, the total preprocessing cost is in O(n'N + nN logN). 
The asymptotic spatial cost is not higher than that necessary to store the original 
points, namely in O(nN). If  an indexed table is used instead to store the points in 
each submodel, using the real value as an index, then the spatial cost depends on the 
number of pre-allocated buckets necessary to avoid collisions, which cannot be 
easi~ estimated in general, but the average preprocessing cost is reduced to be in 
O(n-N), since insertion can be done in constant average time. 

The search of the nearest neighbour to a previously unknown point (operating 
phase) involves a cost per submodel in: 

- O(n) for the normalization and transformation of the point. 
- 0(1)  for the computation of the spacefilting mapping (given a suitable 

limitation to a constant in the maximum dimension of the computation). 
- O(logN) for the search if a sorted vector or a b-tree is used, or 0(1) if an 

indexed table is employed. 
- O(nb) for the computation of the distances from the point to the b nearest 

neighbours in the Real Line, and the selection of the nearest one. 

The temporal cost is therefore, considering a number of submodels r proportional to 
n and a constant b, in O(n- + n logN) for a sorted vector or a b-tree, or O(n ) for an 
indexed table. Of course, the search in the different submodels can be very easily 
performed in parallel, even using weakly coupled processors such as networked 
machines, obtaining then a search cost in O(n + logN) for a sorted structure or in 
O(n) for an indexed one. 

In applications with very large data-sets, where the need for prototypes to be 
inserted and deleted at any time exists and the use of disk-based storage is 
mandatory, the best data structures for the submodels are the b-trees. In those cases, 
the retrieval of the b nearest real values in each submodel can be done very 
efficiently even for large values of b, and the search in all submodels can be 
performed in parallel if each tree is stored in a different disk. This can be true even 
for single processor configurations, since the seek times of the succesive leaves of 
the b-trees are the dominant factor in the total search time. 
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4. Experiments 

In order to establish the influence of the number of prototypes N and the 
dimensionality of the space n in the results of the method, a number of experiments 
have been performed. In the2first experiments, a set of points drawn from a uniform 
random distribution in [0,1] was used, with values of N in [8,000 ... 700,000] and a 
test set size of N'=IO00 points. In figure I, the results are shown. No decrease of the 
search effectiveness due to the size of the set of prototypes is evidenced. 

For each test point, a list of prototypes ordered from smaller to larger distance to 
the test point has been constructed (through exhaustive search) and the sequence 
number, in that list, of the point selected as the nearest neighbour by the approximate 
method, has been determined. If repeated values existed in the sequence, the number 
chosen would be, obviously, the smallest. We will call this number rank number of 
the approximate point. The average rank number, as welt as the worst rank number, 
for the N'  test points, have been calculated for each experiment. The ranges and 
mean values of these terms, for sets of 4 experiments with different random 
initializations, have been represented in the figures. 
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Figure 1: Average and worst rank number of the approximated nearest neighbour found with 
the proposed method (a value of 1 means finding the nearest neighbour, 2 means finding the 
second, etc.) against the size of the set of prototypes, in a uniform random distribution in n=2 
dimensions, with r=2 and b=4. The average values are shown, along with the maximum and 
minimum among four experiments performed using different random parameters for the 
transformations. 

In the first experiment, the value assigned to b was 4 in order to make the error rates 
larger, since in such a low dimension the errors obtained using larger values of b are 
too low to be useful when represented in the graphs. In the rest of the experiments, a 
value of b=16 was used. 

To check if this behaviour is retained in spaces of higher dimensionality, the 
previous experiments have been repeated in an 8-dimensional space. The values of N 
are in this case in [8000,128000]. As can be seen in figure 2, the average and worst 
rank numbers increase linearly with a low slope as the number of prototypes grows 
(note the high resolution of the ordinate axis and the logarithmic scale of the 
abscises). 

A key factor in the cost of many fast nearest neighbour search algorithms is the 
dimensionatity of the space where the elements are defined, n. The average cost of 
most of them grows steeply with the dimension n. It has also been noted that the 
accuracy of the approximate search algorithms drops very quickly as n gets larger. 
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To evaluate the effect of  the dimensionality in our method, a number of  experiments 
were performed. The number of  prototypes was fixed at N=25000. The test set was 
composed of  N'=1000 points. 

In figure 3 the results are shown, along with linear least squares fits (notice that, 
since the controlled variable is represented in a logarithmic scale, a linear fit appears 
as an exponential  function). The linear functions obtained are defined by the 
express ions  Neighbavg (n )  = 0.94 + 0.042 n, for the average neghbour,  and 
Neighbworst(n) = 4.16 + 0.53 n, for the worst neighbour. These equations show 
small slopes, which means that the dimension of the space has a only a moderate 
influence on the quality of  the results. 
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F igu re  2: Average and worst rank number  of  the approximated nearest neighbour for a 
uniform random distribution in n=8 dimensions, with r=8 and b=16. The average values are 
shown, along with the maximum and min imum among four experiments performed using 
different random parameters for the transformations. 
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F igure  3" Average and worst rank number  of  the approximated nearest neighbour in uniform 
random distributions with r=n and b=16. The average values are shown, along with the 
max imum and m i n i m u m  among four exper iments  performed using different r andom 
parameters for the rotations and transformations. The thin line corresponds to a linear least 
squares fit of the data. 
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An alternative to a fixed b (value of the number of neighbours retained along the real 
line), is making it depend linearly on the dir~ension n. In this cgse, the asymptotic 
costgof a sear@ operation increases from O(n" + n logN) to O(nJ+ n logN) or from 
O(n ~) to O(nO). The results taking b=n, and keeping the same conditions as in the 
previous experiments are shown in figure 4. 
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Figure 4: Results in the same conditions of figure 3, but taking b=n. The thin line 
corresponds to a logarithmic least squares fit of the data. 

In this case, the growth of the average and worse rank numbers is no longer linear, 
but logarithmic: Neighavg(n ) = 0.94 + 0.135 In(n) and Neighworst(n ) = 4.25 + 1.13 
In(n). 

To illustrate the performance of the method in a real task, the times of a nearest 
neighbour search using the approximate algorithm are compared to the exahustive 
search in figure 5. Four submodels were used in an 8-dimensional space, with b=16. 

'T I Exhaost,ve search 

8000 14000 20000 

Number of prototypes 

Figure 5: Times of exhaustive and approximate searches in a 300 Mhz Pentium II computer. 

A more complete set of experiments can be found in [Perez,94] and [Perez,97], 
where some tests comparing the classification errors incurred using the exhaustive k- 
nearest neighbours rule and the approximate search algorithm do not show 
significative differences for a surprisingly wide range of parameter settings. This is 
in agreement with the recent results of [Skubalska,96] where a single spacefilling 
mapping is used in several k-nearest neighbour classification tasks, with error rates 
similar to the exhaustive search method. 
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5. Conclusions 

The search of the nearest neighbours to a point in a set of prototypes in a vector 
space is a key problem in many disciplines, due to its theoretical appeal and its 
practical applications. The results presented here are very promising, and tests on the 
performance of the proposed method on real applications are being carried out, 
showing a real practical value. These applications include optical character 
recognition, and identification using fingerprints in a large database. In every case, a 
huge reduction of the actual search time has been achieved at the expense of a small 
loss of precision. 

The method proposed is easy to adapt to the demands of most tasks, whether 
disk-based or memory resident, with a fixed data-set or with a need of frequent 
insertions and deletions, etc, and a specially good behaviour is being observed in 
classification applications where very large sets of prototypes are involved. In those 
cases, the time savings are especially important and the size of the manageable data- 
sets are enlarged many orders of magnitude. 
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