Abstract
In this paper, an algorithm for approximate nearest neighbours search in vector spaces is proposed. It is based on the Extended General Spacefilling Curves Heuristic (EGSH). Under this general scheme, a number of mappings are established between a region of a multidimensional real vector space and an interval of the real line, and then for each mapping the problem is solved in one dimension. To this end, the real values that represent the prototypes are stored in several ordered data structures (e.g. b-trees). The nearest neighbours of a test point are then efficiently searched in each structure and placed into a set of candidate neighbours. Finally, the distance from each candidate to the test point is measured in the original multidimensional space, and the nearest one(s) are chosen.
Chapter PDF
Keywords
- Test Point
- Uniform Random Distribution
- Exhaustive Search Method
- Neighbour Search Algorithm
- Temporal Cost
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bartholdi, J.J.; Platzman, L.K. (1983) “A Fast Heuristic Based on Spacefilling Curves for Minimum-Weight Matching in the Plane“, Information Processing Letters, 17. pp. 177–180.
Bartholdi, J.J.; Platzman, L.K. (1988) “Heuristics Based on Spacefilling Curves for Combinatorial Problems in Euclidean Space”, Management Science, 34. pp. 291–305.
Bentley, J.L.; Weide, B.W.; Yao, A.C. (1980). “Optimal Expected Time Algorithms for Closest Point Problems”, ACM Transactions on Mathematical Software, Vol. 6, pp. 563–580.
Bern, M. (1993). “Approximate Closest-Point Queries in High Dimensions”, Pattern Recognition, Vol. 45, pp. 95–99.
Fukunaga, K.; Narendra, P.M. (1975). “A Branch and Bound Algorithm for Computing k-Nearest Neighbors”, IEEE Transactions on Computers, Vol. 24, No. 7, pp. 750–753.
Friedman, J.H.; Baskett, F.; Shustek, L.J. (1975). “An Algorithm for Finding Nearest Neighbors”, IEEE Tr. on Computers, Vol. 24, No. 10, pp. 1000–1006.
Friedman, J.H.; Bentley, J.L.; Finkel, R.A. (1977). “An Algorithm for Finding Best Matches in Logarithmic Expected Time”, ACM Transactions on Mathematical Software, Vol. 3, No. 3, pp. 209–226.
Fukunaga, K. (1990). “Introduction to Statistical Pattern Recognition”, Academic Press, San Diego, CA.
Hilbert, D. (1891). “Ueber die steitge Abbildung einer Linie auf ein Flaechenstueck”, Math. Ann, Vol. 38, pp. 459–460.
Imai, H. (1986). “Worst-Case Analysis for Planar Matching and Tour Heuristics with Bucketing Techniques and Spacefilling Curves”, Journal of the Operations Research Society of Japan, Vol. 29, No. 1, pp. 43–67.
Jain, A.K.; Dubes, R.C. (1988). “Algorithms for Clustering Data”, Prentice Hall.
Kalantari, I.; McDonald, G. (1983). “A Data Structure and an Algorithm for the Nearest Point Problem”, IEEE Trans. on Software Engineering, Vol. 9, No. 5, pp. 631–634.
Kim, B.S.; Park, S.B. (1986). “A Fast k-Nearest Neighbor Finding Algorithm Based on the Ordered Partition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 761–766.
Miclet, L.; Dabouz, M. (1983). “Approximative Fast Nearest Neighbor Recognition”, Pattern Recognition Letters, Vol. 1, No. 5/6, pp. 277–285.
Murphy, O.J.; Selkow, S.M. (1990). “Finding Nearest Neighbors with Voronoi Tessellations”, Information Processing Letters, Vol. 34, pp. 37–41.
Omohundro, S.M. (1990). “Geometric Learning Algorithms”, Physica D, 42. pp.307–321.
Peano, G. (1890). “Sur une Courbe qui Remplit Toute une Aire Plane”, Math. Ann., Vol, 36, pp. 157–160.
Pérez, J.C.; Vidal, E. (1994). “Métodos Geométricos de Aprendizaje Supervisado”,.Ph.D. Thesis (In spanish) DSIC. Univ. Politécnica de Valencia.
Pérez, J.C.; Vidal, E. (1997). “The Extended General Spacefilling Curves Heuristic” Technical Report, Dept. DISCA. Universidad Politécnica de Valencia. http://www.disca.upv.es
Pérez, J.C.; Vidal, E. (1998). “The Extended General Spacefilling Curves Heuristic” Submitted to ICPR-98.
Poggio, T.; Girosi, F. (1990). “Networks for Approximation and Learning”, Proceedings of the IEEE, Vol.78, no.9. pp. 1481–1497.
Sethi, LK. (1981). “A Fast Algorithm for Recognizing Nearest Neighbors”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 11, No. 3, pp. 245–248.
Shasha, D.; Wang, T. (1990). “New Techniques for Best-Match Retrieval”, ACM Transactions on Information Systems, Vol. 8, No. 2, pp. 140–158.
Sierpinski, M.W. (1912). “Sur une Nouvelle Courbe Continue qui Remplit Toute une Aire Plane”, Bull. Acad. Sci. de Cracovie, pp. 462–478.
Skubalska, E.; Krzyzak, A. (1996). “Fast k-NN Classification Rule Using Metric on Space-Filling Curves”, Proceedings of ICPR-96, pp. 121–125.
Vidal, E. (1986). “An Algorithm for Finding Nearest Neighbours in (Approximately) Constant Average Time”, Pattern Recognition Letters, Vol. 4, pp. 333–344.
Yao, A.C.; Yao, F.F. (1985). “A General Approach to d-dimensional Geometric Queries”, Proceedings of the 17th Annual ACM Symposium on the Theory of Computing, 163-168.
Yunck, T.P. (1976). “A Technique to Identify Nearest Neighbors”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 6, No. 10, pp. 678–683.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez, JC., Vidal, E. (1998). An approximate nearest neighbours search algorithm based on the Extended General Spacefilling Curves Heuristic. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds) Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in Computer Science, vol 1451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033294
Download citation
DOI: https://doi.org/10.1007/BFb0033294
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64858-1
Online ISBN: 978-3-540-68526-5
eBook Packages: Springer Book Archive