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Abstract. This paper aims at unifying the presentation of two-fold rejection- 
based pattern classifiers. We propose to define such a classifier as a couple of 
labelling and hardening functions which are independent in some way. Within this 
framework, crisp and probabiIistic / fuzzy rejection-based classifiers are shown to 
be particular cases of possibilistic ones. Classifiers with no reject option remains 
particular cases of rejection-based ones. Examples of so-defined classifiers are 
presented and their ability to deal with the reject problem is shown on artificial 
and real data sets. 

1 Pattern Classification 

The pattern classification problem can be defined as follows. Let x = (xl, x2, ..., xp) ~ 
be a pattern described by p features, and ~ = {a~l,a32, .-.,~c} be a set of  c classes. 
A classifier performs a mapping: NP -+ L.c a class labels space, x ~ t(x) = 
(ll(x),12(x), ...,lc(X)). Three sets of  class label vectors in Nc may be defined as in 
[1]: 

I. Lpc = [0, 1] ~, i.e. the unit hypercube in ~c ; 
l(x) E Lpc is a possibilistic label vector, 
e.g. l(x) = (0, 0.7, 0.5) t. 
Some authors exclude the origin of  the unit hypercube from Lpc, e.g. in [1]. Since 
a possibilistic value represents a degree of  typicality, we prefer not to do so. 

C 
2. Lfc  = {l E Lp~ : ~i=1 ti(x) = 1} ; 

l(x) E Lfc may bo either a probabilistic or a fuzzy label vector (depending on the 
way it has been generated), 
e.g. l(x) = (0.1,0.6, 0.3) t. 

3. Lnc = {l E Lf¢ : l~(x) E {0, 1},Vi = 1,c} ; 
l(x) E Lhc is a hard (or crisp) label vector, 
e.g. l(x) = (0, 1, O) t. 

Depending of  the nature of  I (x), any function: x ~-+ I (x) is a possibilistic, a proba- 
bilistic, a fuzzy, a hard classifier respectively. Note that Lhc C Lye C Lpc. 

Hard classification often is the final goal of  most pattern recognition processes. That 
is the reason why we prefer to define a classifier as a couple o f  functions (L, H)  defined 
as follows. 
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Definition 1. Any function L: ~P ~ L~ is called a labelling function. 

Definition 2. Any function H: L.e --+ Lh~ is called a hardening function. 

Definition 3. We shall call a classifier any couple (L, H).  

In both fuzzy and possibilistic contexts for pattern classification, labelling is obtained 
using membership functions. Therefore, we use the following notation: #i(x) for labels 
generated by L, 1,i(x) for labels resulting from H. Figure 1 summarizes such a general 
classification process. 

feature space label space hard label space 

x ~ gYJ ~11 labelling t ~t(x) ~ L'c ~[ hardening ] ,~ l(x) ~ Lhc 

Fig. 1. Classification process 

Most of classifiers developed so far either are or can be formulated as above, e.g. in 
[7]: 

- the Bayes rule 

Labelling Part L : ~P -+ L.c =Lyc ,  x ~+ #(x) 
given prior probabilities P (wi) summing up to one, compute the class conditional 
densities P (xlwj) and the mixture density P (x) = ~ j = l  P (xlwJ) P (wj) 

P(x) 

Hardening Part H :Lyc -+ Lhc, It(X) ~-+ l(x) 
• j = argmaxi#i(x) 
• l~(x)  = 5~j 

- the k-NN rule 

Labelling Part L : ~P ~ L.c = Lfc or Lhc (k = 1), x ,-~/~(x) 
given N(x)  the set of k - N N  of x, with respect to a distance measure d on ~P 

• ~ i ( x )  = ~-' 
k 

where ki is the number of N N  issued from wi 

Hardening Part H :Lyc --~ Lhc, I~(X) ~-~ t(x) 
• j = argmaxi#i(x  ) 
• t~(x) = 6~ 
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Another motivation for distinguishing both parts of a classifier is the kind of pa- 
rameters that may be needed for the classification of a pattern whatever the classifier 
is: labelling parameters and hardening parameters. Most of classifiers do not need any 
parameter for their hardening part, but only for their labelling part, e.g. for the clas- 
sifiers above: mean vectors, covariance matrices and prior probabilities for the Bayes 
rule, number k of neighbors for the k - N N  rule. Furthermore, some classifiers whose 
labelling part is different can share the same hardening one, e.g. the classifiers above. 
In some way, both parts are independent. 
This tbrmulation appears to be very useful for describing rejection-based classifiers. 

2 Pattern Classification and Rejection 

In the previous classification scheme, Lhc expresses the feature space partitioning into 
c mutually exclusive areas {S21, Y22, ..., Y2c} = £2 associated with the classes of w. This 
is clearly not efficient in many applications because: g? = NP whereas the definition of 
aJ is rarely complete, and Y?i areas boundaries are sharp whereas classes may partially 
overlap. Reject options may be used to overcome both limits and therefore reduce the 
misclassiiication risk. 
Two kinds of rejection are commonly accepted: distance rejection which allows not to 
classifying a pattern in any class of w and ambiguity rejection which allows to classify 
a pattern in several (or all) classes of w. Classifiers including these reject options result 
in partitioning the feature space into (c + 2) areas, as shown in Figure 2:Y2 to Y20 tO S2a, 
where Y20 and Y2a are associated with a distance reject class Wo and an ambiguity reject 
class co~ respectively. 

X o 

x,2 

xi 

Fig. 2. Classes areas 

Let us see how such classifiers can be formulated as a couple (L, H)  of labelling 
and hardening functions as well. In order to reflect the classification areas, the hard label 
space must include: 

l. Lh~ ¢* 
2. L°¢ = {l C L.p¢ : l i(x)  E {0, 1 } , E ~ l l ~ ( x  ) = 0 }  = {(0,0,. . . ,0) t} ~ ~o 
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with L~c = (l E Lp~ "li(x) e {0, 1}, Eic__, l~(x) = c} = {(1, I,... ,  1) t } 
and n~c = {I e Lpc : li(x) e {0, 1}, 1 < ~ = 1  l~(x) < c} 

Therefore, we can define a rejection-based classifier as a couple of functions (L, H), 
where H is defined as follows: 

• r ° ' a ' a  w h e r e  F~0'l'a ~- L h  c -[- L ° c  ' T I , ~  Definition4. Any function H: L ~ --+ ~ , ~h¢ + Z~hc is the 
set of 2 c vertices of Lp~ is called a rejection-based hardening function. 

The different subsets of Lpc are shown in Figure 3. Superscripts 0, I and ~ denote 
particular cases of rejection involved, i.e. distance rejection, total ambiguity rejection 
and partial ambiguity rejection respectively. We distinguish total ambiguity and partial 
ambiguity because some classifiers do not deal with both cases• Classifiers dealing with 
partial ambiguity rejection are said to be class-selective as in [8]. 

Lhc • 

LOc 0 

Llc • 

L~c @ 

Fig. 3. Hard label spaces 

In the definition above, we did not mention any condition on the label space L.c 
the label vectors #(x) have to be issued from. Let us discuss this point with respect to 
the different pattern classifier design approaches. When the L function takes values in 
Lpc, it is easy to build up a rejection-based H function taking values in ~hcrO'l'~ because 
L0,1,~ hc C Lhc. The H function generally consists of two sequentially conditioned steps 
whose strategy is quite different: 

1. accept-first, in which both kinds of rejection are considered independently, 
2. reject-first, in which both kinds of rejection are considered dependently. 

Whatever the strategy is, so defined rejection-based possibilistic classifiers need 
hardening parameters whereas non rejection-based classifiers do not. These parameters 
generally consist of thresholds on membership function values #i (x) issued from the 
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labelling part. The number of hardening parameters can vary from 2 (one for each kind 
of rejection) to 2c (if they are class-dependant). Hardening parameters can be learned 
fl'om a learning set as well as labdting ones, e.g. for a class of possibilistic classifiers in 
[5]. 

Step 1 

&ep 2 

1hble 1. Accept-first strategy 

Test for Condude l(z) E 

• distance rejection .L°~ 
(understood vs acceptation) otherwise 

if accepted, 
• exclusive classification 

(understood vs ambiguity rejection) 
-Lhc 

else L l'~ hc 

Step 1 

Step 2 

Table 2, Reject-first strategy 

Test for 

• test for exclusive classification 
(understood vs rejection) 

if rejected, 
• test for distance rejection 

(understood vs ambiguity rejection) 

ConcLude l(x) E 

oLh~ 
otherwise 

.L°o 
else L l'a hc 

If the L function takes values in L f o  it is not so easy to design fuzzy / probabilistic 

classifiers that include both kinds of rejection because Lfc do not contain ~hcr°&~ but 
only Lhc. The use of a possibilistic rejection-based classifier with fuzzy / probabilistic 
labels unfortunately leads to undesirable results such as confusion of D0 and D,~ or 
f20 and £2, depending on the degree of separability of the classes and on the hardening 
parameters values. If a classification problem needs the design of a classifier which 
include both kinds of rejection (e.g. overlapping classes and possibility of outliers), 
and if the available labels are in Lfc,  it is more appropriate to follow one of the listed 
approaches: 
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C 1. relaxing the normalization condition Ei=I Pi(x) ~-- 1 and therefore assuming a L 
function taking values in Lvc 

2. not directly basing Step I on/~(x) E Lfc, whatever the strategy is, but on a function 
f ( x )  taking values in N+ 

3. designing a classifier which either exclusively classify a pattern or simply reject it 
without distinguishing between distance rejection and ambiguity rejection ; 
this approach corresponds to a reject-first strategy without Step 2 

4. considering a unique type of rejection ; 
this approach might corresponds to a accept-first strategy without Step 1 or to a 
reject-first strategy without Step 2 depending on the involved reject option. 

3 Examples of classifiers 

Every classifier including both reject options can be formulated as a couple of functions 
(L, H)  with the mentioned recommendations. 

L °'~'~ being a boolean vector, it is convenient to express its A label vector l(x) E ~ 
computation as the result of a relational operation. The notation below assumes that if 
both operands are vectors of same dimension, the operation is performed component by 
component and the result is 0 for false or I for true. We allow one or both operands to 
be scalars and implicitly transform them into constant vectors whose dimension agrees 
with l(x). Consequently, we allow l(x) to be a logical expression in a test, assuming 
that l(x) is true if it is not a zero vector. 

3.1 A Possibilistie Classifier 

The characteristics of the first classifier we wcsent are: possibilistic labelling, reject-first 
strategy, class-selective ambiguity rejection. It is a modified version of a classifier we 
proposed [6]. 

Labelling Part L : ~P --+ Lpc, x ~+ #(x) 

given class prototypes (or estimated on a learning set), e.g. class centers m~ and 
covariance matrices Si,  

• /~(x) -- l with d 2 (x,w~) = (x - mO t S~ -1 (x -rn~) +d(z,w~)' 

Note that rn~ and Si  being labelling parameters, they have to be known or estimated 
on a learning set. The used labelling function could be replaced by another one without 
changing the hardening function, which is: 

r O,l,a Hardening Part H : Lyc --~ ~hc , #(x) ~ l(x) 

given a reject vector #r = (#r,1,#,-,2,...,/~,c) t and a distance vector /-to = 

(~o,1, ~o,2 . . . .  , tzo,c) t, 
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,, M = (M~, M2 ..... M~) t, where Mi = maxj¢i #a (x) 
• = >_ > + M)  
1. if /(x) ,  then (Step l ; / (x)  E Lh~) 

2. else l(x) = (p(x) > #o) (Step 2 ; l(x) ~ L°~ or Lhc ) 
endif 

It is worthy of note that the hardening parameters #r,~ and #o# can be class- 
independent ; they are in [0, 1]. The more #~,~ is, the less exclusively classified and 
the more rejected the patterns are. Given >,~.# parameters, the more >o# are, the less 
ambiguity rejected and the more distance rejected the patterns are. The classifier reduces 
to an exclusive one, i.e, with no reject options, when the hardening parameters are all 
set to zero. 

3.2 A Probabilistic Classifier 

The second classifier associates the forerunning approach of rejection by Chow [2], the 
work by Ha [8] and Dubuisson's one [3]. The characteristics of the resulting classifier 
are: pmbabilistic labelling, accept-first strategy (with Step 1 consisting in threshOding 
f ( x )  instead of/~(x)), class-selective ambiguity rejection. 

Labelling Part L " ~P --+ Lfc, x ~-+ p,(x) 

given prior probabilities P ( w d  summing up to one, compute the class condi- 
tional densities P (zlwj),  e.g. gaussian ones, and the mixture density P (x) = 

E ; = I  P (XlCOJ) P (Ogj) 

P(z) 

Under gaussian assumption, the labelling parameters are the same as the previous 
ones, i.e. rn~ and S~. 

T0,1, a Hardening Part H : Lf~ -+ ~h~ , #(x) ~, l(x) 

given a density threshold s and an ambiguity reject threshold t, 
• = ( P ( x )  >_ s) 
I. i f- , t (x),  then 

2. else l ( x ) =  (#(x) > t) 
if -~l(x), then use the Bayes rule 

else 
endif 

endif 

(Step 1 ;I(x)  e L°c) 
1,a (Step 2 ; l(x) E Lhc or Lhc ) 

It has been proven in [8] that the ambiguity threshold t should be in [0, 1]. The 
density threshold s should be small enough in order to allow the probability for a pattern 
to belong to the distance reject area to be small, as suggested in [4]. The classifier 
reduces to the Bayes rule, when the hardening parameters s and t are set to 0 and ½ 
respectively. 
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4 Experimental Results 

4.1 Classification Areas 

As an illustration, we present the classification areas both presented classifiers produce 
in both cases of overlapping and well-separated classes. Figure 4 shows the used learning 
sets composed of c = 3 classes of artificial gaussian two-dimensional samples with unit 
standard deviation. 

10 t 

t 
(a) 

e ~3~ 

~7 

0-12 033 
I 

0 

0 

0-11 

s p ° ~ ( b )  

0-12 
I 

-5 

.i..E. 

, t  

-5 0-13 
i ! 

-5 5 -10 0 5 10 

Fig. 4. Learning sets: overlapping classes (a), separated classes (b) 

Figure 5 shows the classification areas obtained using the possibilistic classifier. It 
is worthy of note that for both cases (a) and (b), the hardening parameters were set to 
the same values (#r# = #r = 0.1 and #0# = #0 = 0.2). As expected, the proposed 
classifier leads to satisfactory areas, in particular in the case of well-separated classes 
for which no ambiguity area is performed. 
The classification areas provided by the probabilistic classifier are shown in Figure 6. 
As well as the previous classifier, the probabilistic one gives excellent results. Again, 
the hardening parameters were set to the same values (s = 0.001 and t = 0.1) in both 
cases (a) and (b). 

4.2 Classification Performance 

Another interesting issue is the classification performance with respect to rejection 
abilities of the classifiers. We have tested both presented classifiers on the well-known 
Iris data set consisting of 150 patterns described by p = 4 features, divided in c = 3 
classes of 50 patterns each. These data are such as class wl is well separated from the 
two other ones whereas w2 and w3 slightly overlap. 
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Fig. 5. Possibilistic classification areas: overlapping classes (a), separated classes (b) 
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Fig. 6. Probabilistic classification areas: overlapping classes (a), separated classes (b) 

A 1-fold cross-validation (leave-one-out) procedure has been used in order to esti- 
mate the different probabilities. Pc (correct classification), P~ (ambiguity rejection), Pe 
(error or misclassification) and/5o (distance rejection) by the empirical rates. Table 3 
shows the results obtained. The hardening parameters have been set to #,,~ = /z~  = 0.1 
and/~o# = #o = 0.2 for the possibilistic classifier and to s = 0 and t = 0.1 for the 
probabilistic one. 
For comparison, the probabilities estimates obtained using the Bayes rule and the 1-NN 
one are shown in Table 4. As expected, Pe is lower for the rejection-based classifiers. 
Not surprisingly, the hard labels of  all ambiguity rejected patterns have always been 
(0, 1, 1), i.e. the ambiguity reject area reduced to f2~ = f22,3 whatever the classifier is. 
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Table 3. Rejection-based classifiers 

~ & & ~0 ~ 
Possibilistic 96 2 2 0 
Probabilistic 94.67 2 2 1.331 

Table 4. Classifiers 

Bayes 96.67 3.33 
1-NN 94.67 5.33 

5 Conclusion 

In this paper, we have proposed a general formulation of two-fold rejection based 
classifiers as a couple (L, H)  of a labelling and a hardening function, each involving 
independently a set of parameters. Within this framework, it is possible to unify the 
presentation of classifiers. With respect to the label space, possibilistic classifiers are 
shown to encompass probabilistic / fuzzy ones and crisp classifiers. Of course, for 
particular values of the hardening parameters, so-defined classifiers reduce to classifiers 
with no reject option. 
A possibilistic and a probabilistic classifiers have been presented within this framework. 
Their ability to deal with both reject options (distance, ambiguity) has been shown on 
simple examples of overlapping and well-separated classes. 
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