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Abstrac t .  Local learning methods approximate a target function (a 
posteriori probability) by partitioning the input space into a set of local 
regions, and modeling a simple input-output relationship in each one. In 
order for local learning to be effective for pattern classification in high di- 
mensional settings, regions must be chosen judiciously to minimize bias. 
This paper presents a novel region partitioning criterion that attempts 
to minimize bias by capturing differential relevance in input variables in 
an efficient way. The efficacy of the method is validated using a variety 
of real and simulated data. 

1 I n t r o d u c t i o n  

In pattern classification, a feature vector x E ~P is assumed to be one of J 
classes {Ci} J, and the objective is to assign x to the correct class. For a given 
cost matrix Lik, where Lik denotes the cost associated with assigning x to C~ 
when x E Ck, the Bayes decision rule assigns x to Ci such that  the expected 

j . . . . . . . .  
loss L~ = ~k=l L~k Pr(klx) is mmlmmed. If all mmclassfficatlons reduce an equal 
cost, then the Bayes rule reduces to: i* = argmaxl<~<j Pr(ilx ). To apply the 
Bayes rule, therefore, {Pr(ilx)} J must be estimated.-  - 

One broad class of methods for estimating {Pr(ilx)}~, based on supervised 
learning, is to treat  the class label C at query x as a random variable from 
the distribution {Fr(ilx)} g. Following Friedman's notation [5], C at x can be 
characterized by Yilx = 1 if CIx = i or 0 if CIx ¢ i. This gives rise to 

fi(x) -'- Pr(i[x) = Pr(yi = 1Ix) = E(y~[x), (1) 

J with 0 ~ f~(x) _ 1, and ~i=1 fi(x) = 1. The learning methods can then be 
x N applied to estimate each f~(x) from the corresponding training da ta  { k, Yi}k=l, 

i = 1 , . . . ,  J. This learning paradigm has been a basis for many techniques de- 
veloped in neural networks, machine learning, and memory-based regression for 
pattern classification. In what follows, we drop subscript i from fi(x) in (1) for 
clarity. 

2 L o c a l  L e a r n i n g  

Local learning methods [2, 3, 4, 9, 10, 12] at tempt to learn the target function 
f (x)  (1) by first partitioning the space x E ~P of input variables into a set of local 
regions {Rm} M, where Rm C ~P and uMRm = ~P. These methods then learn 
a separate approximator ira(x) (usually low order polynomials) individually in 
each local region. The accuracy of learning can be measured by the error function 

L( f (x) ,  ] (x))  = If(x) - ](x)[ 2. (2) 
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The "local" notion can be characterized by the size of the regions, size(Rm) = 
avex,x, eR., I] x - x ~ Ih where ave is an averaging function. For p = 1, i.e. x E ~, 
the regions can be described by their locations and sizes. For p >_ 2 regions have 
"shape" as well as location and size. One can define the shape of a region by its 
size along all directions in the input space, that is, by the function [6] 

= avex l ,  t (x - um)l (3) 

where ¢~ is a unit vector in ~P and Um is the center of Rm. 
Local learning methods have shown promise in low dimensional settings [5, 9]. 

However, these methods tend to be less effective as dimensionality p increases. 
This is a result of the "curse-of-dimensionality" [1]. Given the fact that the 
expectation of (2) can be decomposed into 

E[f(x)  - ](x)] 2 = [f(x) - E](x)]  2 + E[](x) - E/(x)]  2 (4) 

where the first term is the squared bias and the second term is the variance, it can 
be seen that in ordor to minimize the error function (2) in expectation one must 
minimize both squared bias and variance. However, these are competing goals. 
While minimizing squared bias demands small region size, small regions create 
large variance. Techniques, such as recursive covering [6] and "soft" partitioning 
[7], exist that accommodate, to the extent possible, these competing demands. 
The goal of this paper is to introduce a novel technique that minimizes squared 
bias by choosing region shape (3) more judiciously. It represents an attempt to 
mitigate the curse-of-dimensionality. 

3 S p l i t t i n g  C r i t e r i a  

In order to produce a good solution to the classification problem a splitting 
criterion is required that, when combined with recursive partitioning, selects 
region shape (3) such that ira(x) approximates the target f(x) (1) well within 
each region, thereby minimizing the overall error function (2). It is a step where 
care must be taken for achieving optimal pattern classification. 

3.1 Residual  Spl i t t ing 

In [6], it is argued that the optimal shape for a region Rm should be governed 
by the properties of the target function f(x)  within it. Specifically, its size in 
any direction a (3) should be inversely proportional to the rate of change of the 
absolute bias in that direction 

t O  
8m(C 0 ~ 1/avex~R.~ (o~ ~xx[f(x ) - ]m(x)l ). (5) 

It is clear that the size depends on the target function f(x),  the local approxi- 
mator ira(x) used, and the location x of the region in the input space. In words, 
equation (5) states that the input space should be finely partitioned in areas 
where f(x)  is not smooth. 
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Fig. 1. A quadratic function. 

Based on (5) the splitting criterion for recursive partitioning proposed in [6] 
is the following. Let {r~ = Yi - ]R(x~)lxi E R} be the residuals resulting from 
the approximator jR(x) fit to the data in R. Then the criterion (called residual 
criterion here) to be maximized for choosing the split direction a is 

ResidualCri(a)  = lavex~eR{r~lxi < s(a)l + lavex, eR{rilxi > s(oL)l (6) 

where s(a) is the split point (the median of {(~txilxi E R}). It is a computa- 
tionally feasible approximation to (5). Maximizing (6) yields the direction in 
which the points to be removed deviate most from the local approximation in 
the region being split. It has been demonstrated that the splitting criterion (6) 
gives good performance in a variety of target functions. 

3.2 Limitation of  Residual Splitting 

Let us consider the following quadratic target function defined over the two di- 
mensional input space x E [-4, 4] 2 f (x)  -- - x  2. The target f (x)  is clearly asym- 
metric in the input variables as shown in Fig. 1. That is, for an arbitrary rotation 
matrix R, f (x)  ~ f(Rx).  The target f(x)  changes rapidly along the xt axis while 
remaining constant along x2. Suppose one uses a local constant approximator 
(zero-degree polynomial or mean value) in each region. Then it can be shown 
that the optimal recursive split should be carried out along xl only. Assume we 
are given the following training data: {(-a, -2), -9; (-1, -u), -1; (t, -2), -1; (3, -2), -9; 
(--3,2), --9; (--1,2),--1; (1,2),--1; (3,2), --9}. 

Assume further without loss of generality that the directions to be optimized 
are taken to be the original coordinate axes and that the split points are taken 
to be mean values along each axis. When (6) is applied to the above data, it 
fails to yield the optimal direction (xl in this case) along which the input space 
should be split. In fact, ResidualCri(el)  = ResidualCri(e2) = O, where ei is a 
unit vector along the ith input coordinate. That is, (6) cannot distinguish high 
differential relevance between the two input variables. 

While this target function is an especially simple one, the local constant 
approximator is quite general. It is meant to illustrate the problems involved; it 
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shows that (6) is quite limited in producing the desired goal in a simple setting 
and that (6), while computationally simple, is far from approximating (5). Better 
criteria that are sensitive to input differential relevance must be sought. 

3.3 Different ial  Spl i t t ing 

The optimal partition for any region should be driven by the properties of the 
target function f (x)  within it, particularly the derivatives (first order), as indi- 
cated by (5). In this sense, the splitting criterion (6) represents only a zero-order 
approximation to (5) in that it finds a direction in which the points to be re- 
moved (to create a new partition) minimize the residuals from the local fit to 
the data within the region being split. However, it is possible that even though 
the input variables have high differential relevance, the average residual remains 
the same along the directions under consideration, as evidenced by the above 
quadratic function example (Section 3.2). 

The splitting criterion we propose here represents a computationally feasi- 
ble approximation to (5) and is a generalization of (6). It attempts to capture 
input differential relevance by estimating the (first order) derivatives of target 
functions, at least in some situations. 

From the Taylor series expansion, for a sufficiently small 

f (x  + 5ei) - f (x)  + 5e~g(x) + ltf2e~G(x)ei = f(x) + 5[gli(x) + 152[G]ii(x) (7) 
z 

where ei is the unit vector along the ith coordinate direction, [g]i is the ith 
element of g and [G]ii is the iith element of G. Thus, [g]i can be approximated 
by [~]i 

f ( x  + - f ( x )  _ 2 (s )  

When the second term involving [~ii is ignored, which is the second-order term 
in ~ in the Taylor series, we have the forward difference approximation [11] that 
is exact for linear functions. The alternative, central difference approximation 
[11], neglects only third-order terms in 5 and is, therefore, exact for quadratic 
functions. However, the increase in accuracy is at the expense of increased com- 
putation. 

Let 

Yi  - Y j  ixi, 
 j]k 

be the finite difference approximation to the first derivative of the target function 
f(x)  in the region R being split, where 5 and 0 are the procedural ("meta") 
parameters. The conditions, 0 < [[xi]k - [xj]kt < 5 and [I xi - xj [1~< 0, state 
that two points x~ and xj must be close for the approximation to be valid. Note 
that it is possible that such an approximation may not exist. Let 

{[drli(x) = [•]i(x) -O]R/O[xlilx e R, i = 1, . .- ,  n} (10) 
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where ]R is the local approximator in R. If [~]i(x) does not exist, [dr]i(x) = 0. 
Also let the derivative criterion 

DeriCri(a)  = im~xR{l[dr]i(x)llx ~ s(oL)} + m~{l[dr]i(x)l lx > s(a)} (11) 

where s(a) is the split point (the median of {atxlx E R}). Maximizing (11) 
produces the direction along which the first order derivative of the local ap- 
proximation deviates most from that of the target function in the region being 
split. The differential splitting criterion (to be maximized) for selecting the split 
direction a can then be described as 

Spli tCri(a) = ~ResidualCri(a) + (1 - )~)DeriCri(a) (12) 

where )~ E [0, 1]. If the input variables are equally relevant, then how well the 
local approximator fits to the data should determine the split direction. In this 
case, one prefers )~ = 1. On the other hand, if the input variables are unequal 
in their differential relevance, then the direction selected should inversely reflect 
the extent to which such relevance can be captured by the local approximation. 
This corresponds to 0 _< ~ < 1, and is related to the notion of differential scaling 
of input variables. At the extreme where )~ = 0, partition is determined solely by 
(11). In theory, (11) by itself can produce the desired goal. In practice, however, 
insufficient data might impede the direct application of (11). Our experiments 
show that (12) with A E (0, 1) achieves the best of both (6) and (11) worlds. 

In order to gain an intuitive perspective on (12), we apply it to the example 
described in Section 3.2 with the following parameter settings: A = 0.9, (f = 2, 

= 0.1, and again the split points are taken to be the mean. We then have 
Spli tCri(el)  = 3.6 and SplitCri(e2) = 0. Thus xl is the (optimal) direction 
selected for splitting. 

4 Empirical  Resul ts  on Simulated Data  

This section presents results of applying the two splitting criteria (6) and (12) 
to artificial data that simulate a variety of target functions (1). For each tar- 
get function f(x)  and each method k, the mean absolute target error, ek = 
m e a n l f ( x  ) -- £ (x)h was computed over 5000 independently generated test ob- 
servations. The performance measure used for comparison is 

rk = ek /n~n  et. (13) 

The distribution of rk values provides relative performance for each method. 
Thus, this distribution for a method that is best for all target functions should 
be a point mass at the value 1. In all the experiments reported below, )~ (12) 
was set to 0.9. In addition, the values of 5 and 0 (9) used to produce the results 
for each target were selected as the best from among several runs. 

4.1 Quadra t i c  Funct ion  

The target function to be studied in this section is taken to be the same quadratic 
function as in Section 3.2. The two input variables are randomly generated from a 
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Fig. 2. Distribution of relative errors for the quadratic target function. (a) Local con- 
stant approximator. (b) Local linear approximator. 

uniform distribution x -~ U2[-4, 4], and the corresponding output y is generated 
from -x~. 50 sets of training data with N = 500 were independently generated. 
The training observations in each terminal region of the final partition were set 
to 5 (stopping criterion). 

Fig. 2 shows the distributions of relative errors for the two methods on an 
independent test set of 5000 observations. Fig. 2(a) shows the results using a 
local constant approximator, while Fig. 2(b) the results using a local linear 
approximator. It can be seen that high differential relevance is exploited by the 
new splitting criterion (12). 

4.2 R a n d o m l y  G e n e r a t e d  Funct ions  

The quadratic target function was purposefully chosen to show the ability of 
the new splitting criterion to differentiate input relevance in some cases. To 
further illustrate the relative merits of the splitting criterion it is applied to 
a variety of randomly generated target functions [6]. Each one has the form: 
f(x)  K = ~k=l akh(X, Zk,Vk), where h(x,z ,V)  = ~-T e x p [ - ½ ( x - z ) t V - l ( x - z ) ] '  
{ak "-~ U[-1,1]}~,  and {zk ,-, Vn[0,1]}~. In addition, the eigenvectors of 
each V~ are generated uniformly randomly on the unit n-sphere subject to 
the orthogonality constraint, and the eigenvalues are generated uniformly from 
U[0.525V~, 0.025x/~-]. This allowed us to generate a wide variety of target func- 
tions in terms of the geometric shapes of their contours. 

These experiments consist of 100 such randomly generated functions with 
p = 10 input variables. The study of the 100 target functions is divided into two 
groups of 50 targets each, the first group with K = 5, and the second with K -- 
10. The input points for each target were generated randomly from a uniform 
distribution x --, Ul°[0,1]. The training observations in each terminal region 
of the final partition were set to 5 for local constant fitting, while the training 
observations were set to 20 for local linear fitting. The quantity for comparison 
is provided by (13) over 5000 independently generated test observations. 

Fig. 3 shows the distributions of relative performance of the two splitting 
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Fig. 3. Distributions of relative errors for the target functions. (a)(c) K = 5. (b)(d) 
K = 10. (a)(b) Local constant approximator. (c)(d) Local linear approximator. 

criteria for the target functions. In both cases, each target was learned using a 
training set of N = 1500 observations. The results show convincingly that the 
new criterion (12) out performed (6) on all the target functions. It can also be 
seen that local constant fitting seems to give better performance than local linear 
fitting, which is consistent with the results reported in [6]. Finally, an additional 
experiment, whose details we omit here, was carried out to examine the effect of 
A on the performance of (12). The results show that the overall performance of 
(12) as a function of )~ is approximately bell-shaped, indicating neither (6) nor 
(11) alone achieved good performance over target functions under study, and 
that good performance can be obtained over a wide range of A values. 

5 Empir ica l  Resu l t s  on Real  Data  

In order to further evaluate our local learning method for pattern classification, it 
is applied to the Letter Image Recognition Data (LIRD) from the UCI repository 
[8]. LIRD consists of a large number of black-and-white rectangular pixel displays 
as one of the 26 upper-case letters in the English alphabet. The characters are 
based on 20 different fonts and each letter is randomly distorted to produce a 
file of 20,000 unique stimuli that are then converted into 16 primitive numerical 
features (statistical moments and edge counts). A subset of LIRD is used to 
produce the results reported here. It has two classes (letters C and G) with total 
1509 instances (736 for C and 773 for G). The last 11 of the 16 features (first 5 
features, such as box positions and the size of box, are not significant) are used 
here and scaled to fit into a range of real values from 0 to 1. A local constant 
approximator is used, and the training observations in each terminal region of 
the final partition are set to 3. 

In the first experiment, 1000 instances are randomly selected as training 
data, and the rest as test data upon which the resulting classification model is 
evaluated. This is repeated for 7 times, and the median classification accuracy 
is obtained. This process is done 10 times and the mean value is reported here. 
The method (6) achieves an average classification accuracy of 93.4%, whereas 
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the new method (12) (with A = 0.01, 5 = 0.12 and 0 = 0.62) has an average 
accuracy of 94.4%, with standard deviations 0.3 and 0.2, respectively. In the sec- 
ond experiment, only 500 instances are used as training data, and the results are 
91.6% and 92.4% (with A = 0.01, 5 = 0.1 and O = 0.6) with standard deviations 
0.1 and 0.2, respectively. One thing to notice from the experiments is that, while 
significant difference exists in performance between the two methods, the results 
are dose. This might be attributed to the fact that differential relevance along 
directions under consideration is similar. 

6 Conclusions 

The local learning method developed in this paper for pattern classification 
achieves superior performance in a wide variety of target functions and.classifi- 
cation tasks by capturing differential relevance in input variables. Although the 
local learning method has been developed in the context of recursive partition- 
ing, it can be easily extended to recursive covering [6] and "soft" partitioning 
[7] as well. New criteria, both definitional and procedural, will be developed 
in the future that are more efficient computationally and lead to even better 
performance for pattern classification. 
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