Abstract
A new nonparametric feature mapping technique for pattern classification is proposed and compared experimentally with a principal component and Sammon's mapping methods. We use the mapped training-.set vectors for an active weights initialization of the multilauer perception classier in a (wo-variate mapped .space. Simulations have shown a usefulness of the proposed weights initialization method for designing the pereeptrons when we need to obtain highly nonlinear decision boundaries.
Chapter PDF
Key words.
References
Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. NY: Academic Press.
Karouia M., T.Denoeux and R.Langelle. (1995). Influence of Weight Initialization on Multi-layer Perceptron Performance. Proc. ICANN'95, October 9–13, 1995, Paris.Vol 1, 33–38
Palubinskas G. (1996).On Weights Initialization of Back-propagation Networks. Neural Network World, 6(1), 89–100.
Raudys S. and M. Skurichina (1992). The role of the Number of Training Samples on Weight Initialization of Artificial Neural Net Classifier. Proc. of 1-st Russian & IEEE Conf on Neural Networks, Rostov-na-Donu, Russia, 1992, IEEE Publication.
Sammon, J.W. (1970). An Optimal Discriminant Plane.-IEEE Trans Comp. C-19, 826–829.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raudys, A. (1998). A nonparametric data mapping technique for active initialization of the multilayer perceptron. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds) Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in Computer Science, vol 1451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033329
Download citation
DOI: https://doi.org/10.1007/BFb0033329
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64858-1
Online ISBN: 978-3-540-68526-5
eBook Packages: Springer Book Archive