A Nonparametric Data Mapping Technique
for Active Initialization of the Multilayer Perceptron

Aistis Raudys
Institute of Mathematics and Informatics
Akademijos 4, Vilnius 2600, Lithuania
E-mail: aistis.raudys@maf.vu It

Abstract. A new nonparametric feature mapping technique for pattern classification is
proposed and compared experimentally with a principal component and Sammon’s mapping
methods. We use the mapped training-set veciors for an active weights initialization of the
multilayer perceptron classifier in a two-variate mapped space. Simulations have shown a
usefulness of the proposed weights initialization method for designing the perceptrons when
we need (o obtain highly nonlinear decision houndaries.
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1. Introduction

One of principal difficulties that arises in the multilayer perceptron (MLP)
training arc a slow lcarning speed and a possibility to be trapped into a bad local
minimum. In traditional training, the initial weights of MLP are gencrated by a
random nuwmnber generator in some narrow interval. Several authors, however, were
trying to chose the weights from some definite heuristical considerations. It was
noticed an active initialization affects a possibility to be trapped into a bad local
minimum of the cost function. E.g. Raudys and Skurikhina (1992) used a piece-wisc
linear classifier to initialize hidden layer weights of the MLP classificr, and aficr
training obtained 11.8% of errors in the generalization versus 21.9% of errors for a
standard back-propagation with a random initialization (mean valucs of 10
indcpendent experiments; an artificial computer generated data). Palubinskas (1996)
suggested to initialize the weights of the hidden layer in a way that resulting hyper-
plancs of the hidden layer neuroncs would cut an input data fcaturc spacc. He
obtained better gencralization results both on a synthetic XOR problem data as well
as for a rcal rcmote sensing data, Karouia ot al. (1995) uscd class-scparability
preserving feature vectors as the initial hidden layer weights and on a number of the
real world and synthetic data sets showed that their new approach resulted lower
generalization error and were less sensitive to network size and input dimension.

A present publication considers a possibility to initialize the weights using a
human ability to analyse two variate data sets better than most sophisticated
computer algorithms. Qur main idea is 10 map the training-set data into a two-variate
subspace, initialize the network in a man-computer interactive regime, and then -
gradually, sicp-by-stcp to add remaining directions, and to rcturn fo the original
feature space.
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The paper is organiscd as follows. In Scction 2, we briclly describe the main
idea, and review the data mapping methods. In the third section, we present details
of analysis of our original feature extraction method. Fourth and fifth sections
contain simulation results with numerous artificial and real world data sets, and sixth
one - a discussion.

2. Data mapping methods

To realise the active weights initialization idea we necd to have a good data
mapping algorithm that transform a vector x from the p-variate original featurc
space ), inlo a r-variate vector y in a new feature space €, (# < p) in such a way
that the first two features are most informative ones, the third one - a liftle bit Icss,
c.L.c. In this paper, we consider only lincar transformations y = Tx, were Tisa rxp
orthonormal transformation matrix, such that TT'= 1 (an identity matrix).

Then we analyse the data in the 2-variate feature space of ncw componcnis
(directions) y; and y, of the transformed vectory = ( y1, Vs, Vs, W, ... , ¥, ), initialize
the MLP, save the weights of the perceptron. Afterwards we add the feature ys, and
keeping the weights of the perceptron constant, train additional, “third” weights of
each neuron in the hidden layer. In the next step, we train all weights, and add the
feature y4, e.t.c..

In order to find ncw most informative dircctions we used two standard and
devcloped two new feature mapping methods.

Principal component (PC) method oficn is known as discrete Karhunen-Locey
expansion. It does not use information about the membership of vectors X0 X, 10O
different pattern classes. Therefore, in spite of a large number of advantageous
features that are characteristics to the principal component method (maximal
accuracy of the representation of the pattern vectors and the covariance matrix,
maximal entropy function if the pattern vectors are Gaussian; (see, c.g., Fukunaga,
1990), this method destroys a separation between the pattern classes sometimes.

In Sammon mapping technique, one sccks for a new direction y, = tyx, that
scparales the training-scts of oppositc classcs at best. For this Sammon (1966) has
uscd a standard Fisher lincar discriminant (DF), In the second step, one constructs
an orthonormal 2x p matrix T, = (t," t,")’. Notc, two componcnts of the p-variate
vector t; can be chosen arbitrarily. Further, one performs a transformation y, = t;x.
In the third step, one secks a new direction y; = t;x where the training sets of the
opposite classes are separated at best, forms a new (p-2)-variate space orthogonal (o
w and y,. This procedure is continued until a required dimensionality of the new
transformed data is obtained.

Mecthods of the best and worst directions. The principal component method
docs not take into account the scparability of the pattern classes, and therefore often
destroys the scparation of the pattern classes. The Sammon method performs well in
casc, when the pattern classes are unimodal, and the Fisher DF is a good
classification rule for this kind of the data. The main objective of the MLP classifier
is to construct nonlinear discriminat decision boundaries, where the pattern classes
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arc not lincarly separable. In such situations, the Sammon feature extraction method
can fail to obtain a small number highly informative new features. Thercfore we
suggest two new fcature mapping techniques based on nonparametric density
estimation.

Fukunaga (1990) describes a method to find the most informative directions
y,= t,;x. To evaluate the informativeness he uses the Parzen window (PW) estimate
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The criterion (2) is different from a probability of misclassification - a main
objective in the classifier design. It can lead to errors in determination of the best
discriminative dircctions, Therefore, instead of sccking for the best discriminantive
dircctions, we decided to seek for the worst oncs. When in the new dircction y, = t,x,
the pattern classes differs negligibly, errors in inexact determinations of scperability
by (2) arc small. We hope, alter sequential application of this procedure p-2  times
remaining 2 directions will separate the pattern classes in a good way. We call this
new original method - a method of the worst directions. The gradient descent
optimization technique was used to {ind a minimum of the criterion (2).

In our research, we also modified the Fukunaga’s nonparametric method of the
best directions by introducing a new fast nonparametric feature informativeness
mcasure. The nonparametric quality critcrion is a multiextremal one. Thercfore, in
order to find the new directions quickly, we used a random search optimization
technique. This algorithm appeared the most sucessful while applying to complex
structured multimodal data, and is described in the third section with more details.
An experimental comparison of the four feature mapping techniques is performed in
the fourth section.

3. A method of the best directions

Main requirements to the fcature cxtraction method for the active MLP
initialization is an ability do discriminate multimodal complex shaped pattern
classes in the bi-variate space, and a high speed. We used this approach to initialize
the network, which will be trained afterwards. Later, we add the new informative
directions. Thus, we can state weaker requirements to the seperability of the pattern
classes just at the very beginning of the training process.

In our research, we have tested following feature informativeness methods:.
a) the sum of squares error function (2),
b) the classification error estimated by the nearest neighbour rule in the leaving-
one-out mode,
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¢) a function of distances between cluster centres ¢y, and ¢y, of the first and the

my m 1
sccond pattcrn classes 2 X , where the cluster centres ¢); and
I=1/=1" 0.00001 + d(c,, ,c,,)

¢y have been found by the k-means clustering algorithm (see e.g. Fukunaga, 1990),
and »1y, m; are the number of clusters in the learning-sets of the first and second
class, respectively.

d) a number of the learning-set vectors which have changed their cluster
i
3 )
of the “best seperability”. In the last two criteria, we have rejected clusters that
contained less than 3 learning-set vectors.

membership after transforming the p-variate vectors x;’ into the two-variate space

Our simulation studics performed by using a numbcer of artificial and rcal-world
data scts have shown that all four criteria can be useful in defecting the data
structures in the two-variate space. The first two criferia arc rather slow and
impractical whilc applicd to high-dimensional data scts, When the number of
clusters in each pattern class reaches 15-20, the fourth criterion is pretty fast, and
allows to reveal complicated data structures of complex mutimodal data sets.
Therefore, this criterion was chosen as a main one in our research work.

All criteria are nonparametric in their nature and, at the same time, they are
multiextremal ones. Their direct gradient type minimization does not lcad to a global
minimum. Thercfore, in order to find new informative dircctions quickly, we used a
random search oplimization technique performed in an iterative way. In iteration o,
we modificd the transformation 2x p matrix To,y = [, b’} by adding a small zcro
mean symmetrical noise, composed from a mixture of Gaussian components
differing in their variances. The fastest convergence was achieved when we added a
noise only to two components of cach transformation vector (t;, or t;,). In each
iteration, we generated m,.,, =1000 new vectors, estimated the criterion (d) for all of
them, and then - choosed the best one. Then the variance of the noise was reduced,
and a next, (o+1)-th, iteration was performed. As a starting vector Typ, we used: a) a
random hyperplanc that contains three randomly choscn points of the learning-sct, b)
a best hyperplane sclected from me=1000 random ones, ¢) a best pair of original
variables, d) the optimal Sammon’s hyperplane, ¢) the best two cigendirections. The
sccond, (b), stratcgy was most successful.

4. An experimental comparison of four mapping techniques

In order to reveal positive and negative peculiarities of the four feature mapping
techniques investigated, we performed a number of simulation experiments by using
both artificial and real-world data sets.

Types of the artificial data sets.

a) the pattern classes are a mixtures of Gaussian N(p;, T) components in a bi-
variate space; % =I(1-p)+Ep (E is pxp matrix composed from oncs, and p is a
corrclation cocflicient). Remaining p-2 fealures arc Gaussian N0, §o?). Then the
data was rotated by a random orthogonal transformation T,,,. Different combination
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of the parameters p, p, o, p were tested. As an extreme model of this category, we
mention a model where all the means 4, [, pi2 are situated on a straight line, and
any lincar classification mcthod is uscless.

b) the first two features are gencrated in the same way as in a). Remaining p-2
fcatures are functions of the first two first featurcs, and, in addition, the Gaussian
N(0, I6?) noise is added. Different combinations of the parameters p, w;, o, p, and
the p-2 feature generation formulae were tested,

c) the first two fcatures are spherical Gaussian density split into two pattern
classes by a highly non-linear boundary (a contour of a palm, saw, e.t.c). A gap (a
margin) between the pattern classes was formed, and the data was rotated,
nonlincarly folded, and a small noisc was added to remaining p-2 features.

The real-world data sets.

a) a vowels data; 28 spectral and ccpstral fcatures; in onc pattern class we had
400 vowels pronounced by 20 speakers,

b) a lung noisc data; 66 spectral and cepstral features; in one pattern class we
had 180 vectors measured on 18 paticnts,

c) 47-variate data representing zernike moments for hand-written digits “3”
and “8” recognition,

d) 51-variate data representing 51 discrete signal measurements used for a
blind signal (a pulse signal, and a noise) separation,

€) 64 velocity and acceleration characteristics of machines vibration used for
their classification into “good” and “bad” ones. The training-set contains Ny = 63,
Ny= 151 vectors, and the test-sct - Ny, = 45, Ny, = 145  vectors.

The four mapping techniques under investigation were applied to the artificial
and the real-world data sets. Obviously, for each mapping technique one can
construct such artificial data set for which this particular mapping technique
outperforms the other methods. All four mapping methods can reveal the data
structure only in cascs where the data seperability is hidden in a subspace of
dimensionality two.

The principal component method is fast and performs very well if all data
structure is contained in a hyperplane, and the data variances in all other directions
arc small. The Sammon method is as fast as the principal component method, and
reveals the seperability of unimodal pattern classcs comparatively well. This mcthod,
however, fails if the optimal decision boundary is highly nonlincar onc. The method
of the worst dircctions allows to detect the nonlinearity of the discriminant
hyperboundary, however a present, the gradicnt minimization based version of this
method is very slow and impractical for high-dimensional applications. The method
of the best directions is rather fast, and allows to detect the nonlinearity of the
discriminant hyperboundary. Apparently, this method can be improved by using
more sophisticated optimization algorithm,

As typical example of a difficult task in the feature mapping we present in Fig. 1
a, b, ¢, d four scatter diagrams of the learnirg-sets of the machines vibration data
mapped into two-dimensional space by: the principal component method, the
Sammon method, the method of the best directions just after start (the first m, =1000
random gencrations), and at the very end of the iteration process.
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Fig.1. Scatter diagrams of the learning-sets of the machines vibration data mapped
into two-dimensional space by: the principal component method (a), the Sammon
method (b), the method of the best directions: ¢ (at the start) , and d (at the end).

5. Experiments with MLP weights initialization

The active weights initialization procedure. We tested several principal
possibilities of the active weights initialization in the two variate feature space. At
Sirst, while applying the MLP classificr, we had drawn a piccewisc decision boundary
on a computer screen in an interactive regime by using a mousc, and then we
calculated the MLP hidden layer weights corresponding to each scgment of the
piccewisc lincar decision boundary. Afierwards, we were keeping the weights of the
hidden layer constant, and trained only the weights of the output layer. We have
found this approach to be incffective.

Much more effective is a use of the piecewise linear, operator controlled,
decision boundary to classify the training-set vectors, and then to select only
correctly classified vectors. We use these vectors for the MLP initialization by
conventional back propagation training. In many practical problems, the training-set
is small. Therefore, we were adding a small zero mean and small variance Gaussian
noise to each training vector several times, and in such a way we multiplied
(rcgularized) the training-set. Then we classified the new bi-variate training-sct by
our “opcrator designed” pieccwise lincar decision boundary and presented for the
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MLP classifier initialization only correctly classificd vectors - the regularized and
cdited training-sct.

As a third technigue of the active weight initialization we used a simple
multistart training of the MPL classificr with a subscquent sclection of the best
variant, and an operator controlled pruning of unnecessary hidden layer neurones in
the bi-variate space. This technique appeared to be highly cfficient.

As an illustration in Fig. 1d, we present the MLP classifier nonlinear decision
boundary obtained in one of the experiments with the machines vibration data.
Straight lines represent boundaries corresponding to each single ncurone, and a
nonlincar linc - to a desision boundary of MLP. We sce, scveral hidden neuroncs can
be rejected without any damage to the performance of the non-lincar MLP classificr.

Results. We used two dozens of artificial and five real data sets to lcst feature
extraction algorithms and the active MLP initialization procedurcs. It is not difficult
to construct artificial data scts where the active initialization is a uscful fool. In four
experiments with the rcal-world data scts out from five oncs, howcever, our approach
resulted a small or practically no gain in comparison with the conventional (random)
MLP classifier initialization. A reason is very simple - for these four real-world
problems the linear classifier was good enough to obtain a good scparation of the
paticrn classes. There use of the MLP classifier instead of the single layer perceptron
did not allow to reduce the generalization error substantially. The fifth rcal-world
data set, however, required the non-lincar decision boundary: the Fig. 1 4 shows that
good machines arc situated in a centre, and bad oncs arc outside. The successful
mapping of the data into the bi-variate space by means of the method of the best
directions helps to choose a good architecture of the network and to reduce the
generalization error. A part of our experimental results of application of dilferent
initialization stratcgies are presented in Table 1.

Table 1. Classification errors (in percents) and standard deviations of MLP classifier.

# Fcature space, initialization method Training-set  Test-set

1. Original 64 feature space, random initialization 0.5 12.5(0.9)
2. 6 principal componenls space, random initialization 0.0 13.1(0.4)
3. 6 best Sammon’s directions, random initialization 0.0 13.6 (0.6)
4. Individually best 6 features, random initialization 1.0 10.8 (0.9)
5. Best 6 dircctions, random initialization 0.0 11.6 (1.1
6. Best 6 directions, active initialization 0.0 7.5(0.7)

A sclection of six individually best features was performed using criterion d) -
the number of the learning-set vectors which have changed their cluster membership
after the feature transformation into one-variate spaces. From the Table 1 we see that
initialization and training the MLP in the two-variate space obtained by using the
non-parametric critcrion @) and subsequent increase in the number of dimensions up
to 6 is much more effective than use of the conventional parametric the feature
mapping and the perceptron initialization techniques.
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6. Conclusions

A gencral conclusion which can be drawn from our investigation is rather trivial
- the successful feature spacc reduction, and the network’s initialization with
subscquent its training in the low-dimensional space speeds up the training process
and reduces the generalization error. The active initialization of the feedforward
network in the bi-variate mapped space is useful only when the data structure really
is hidden in a subspace of dimensionality two, and when one needs to design a
highly non-linear decision boundary. We have met such situation only in one real
world problem out of five problems investigated.

The principal component and the Sammon mecthods are fast. In practical
situations, the principal component method with the small number of the first
components usually fails to reveal separability of the pattern classes. The same can
be said about thc Sammon method, when pattern classes arc described by complex
multimodal distributions. Our new method of the worst dircctions performs well
when other two classical methods misfire, but is very slow. The method of the best
dircctions is comparatively fast and allows fo reveal complex structure of the data
distributions. However, it should not be applied in simple situations.

For practical applications, we recommend 1o use the Sammon mecthod at first,
and the nonparametric method of the best directions later, if the {irst of them fails.

Acknowledgements

The author thanks to Prof. B.Sankur from Istanbul Bogazici University, Dr,
A RudzZionis from the Spcech Analysis Laboratory of Kaunas UT, Dr. R.P.W.Duin
from Department of Applied Physics, Delft UT for providing the real world data scts
for the experiments, his scientific supervisors V.Diciiinas and Prof. S.Raudys for
useful discussions, an aid in formalising computational algorithms and a help in
preparing a final version of the paper for publication,

References

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. NY: Academic
Press.

Karouwia M., T.Dcnocux and R.Langelle. (1995). Influence of Weight Initialization
on Multi-layer Perceptron Performance.  Proc. ICANN'9S, October 9-13, 1995,
Paris.Vol 1, 33-38,

Palubinskas G. (1996). On Weights Initialization of Back-propagation Networks.
Neural Network World, 6(1), 89-100.

Raudys S. and M. Skurichina (1992). The role of the Number of Training Samples on
Weight Initialization of Artificial Neural Net Classifier. Proc. of I-st Russian & IEFE
Conf. on Neural Networks, Rostov-na-Donu, Russia, 1992, IEEE Publication.

Sammon, J.W. (1970). An Optimal Discriminant Planc. - IEEE Trans Comp. C-19,
826-829.



