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Abstract. A new nonparametric feature mapping technique for pattern classification is 
proposed and compared experintentally with a ptqncipal component and Sammon ~ mapphtg 
methods. We use the mapped trainhtg-set vectors for an active weights hlitialization of the 
nlldtilayer perceptron class!tier in a two-variate mapped space. Simulations have shown a 
usefidness of the proposed weights initialization method for desigpl#ig the perceptrons when 
we need to obtain highly nonlinear decision boundaries. 
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I. Introduction 

One of principal difficulties that arises in the multilayer perceptron (MLP) 
training are a slow learning speed and a possibility to be trapped into a bad local 
minimmn. In traditional training, the initial weights of MLP are generated by a 
random number generator in some narrow interval. Several aulhors, however, were 
trying to chose the weights from some definite heuristical considerations. It was 
noticed an active initialization affects a possibility to be trapped into a bad local 
minimum of the cost function. E.g. Raudys and Skurikhina (1992) used a piece-wise 
linear classifier to initialize hidden layer weights of the MLP classifier, and after 
training obtained 11.8% of errors in the generalization versus 21.9% of errors for a 
standard back-propagation with a random initialization (mean values of 10 
independent experiments; all artificial computer generated data). Palubinskas (1996) 
suggested to initialize the weights of the hidden layer in a way tlmt resulting hyper- 
planes of the hidden layer neurones would cut an input data feature space. He 
obtained better generalization results both on a synthetic XOR problem data as well 
as for a real remote sensing data. Karouia et al. (1995) used class-separability 
preserving feature vectors as the initial hidden layer weights and on a number of the 
real world and synthetic data sets showed that their new approach resulted lower 
generalization error and were less sensitive to network size and input dimension. 

A present publication considers a possibility to initialize the weights using a 
human ability to analyse two variate data sets better than most sophisticated 
computer algorithms. Our main idea is to map the training-set data into a two-variale 
subspace, initialize the network in a man-computer interactive regime, and then - 
gradually, step-by-step 1o add remaining directions, and to return to lhe original 
fealure space. 
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The paper is organised as follows, hi Section 2, we briefly describe the main 
idea, and review the data mapping methods. In the third section, we present details 
of analysis of our original feature extraction method. Fourlh and fifth sections 
contain simulation results with numerous artificial and real world data sels, and sixth 
one - a discussion. 

2. Data mapping methods 

To realise the active weights initialization idea we need to have a good dala 
mapping algorithm that transform a vector x from the p-variale original feature 
space ~1, into a r-variate vector y in a new feature space ~)r (r < p) in such a way 
that the first two features are most informative ones, the third one - a iillle bit less, 
e.l.c. Ill this paper, we consider only linear lransformalions y = Tx, were T is a r x p 
orthonormal Iransformation matrix, such thai TT '= I (an identity nmlrix). 

Then we analyse the data in the 2-variate feature space of new componcnls 
(directions) y~ and Y2 of the transformed vector y = ( y,, y2, y,, y, . . . . .  y , ) ' ,  initialize 
the MLP, save the weights of the perceptron. Afterwards we add the feature y3, and 
keeping the weights of the perceptron constant, train additional, "third" weigh|s of 
each neuron in the hidden layer. In the next step, we train all weights, and add the 
feature y~, e.t.c.. 

In order to find new most informative directions we used two slandard and 
developed two new feature mapping methods. 

Principal component (PC) method often is known as discrete Karhuncn-Loev 
expansion. It does not use information about the membership of vectors xw.. , x to 

different pattern classes. Therefore, in spite of a large number of advantageous 
features that are characteristics to the principal component method (maximal 
accuracy of the representation of the pattern vectors and the covariance matrix, 
maximal entropy fimclion if the pattern vectors are Gaussian; (see, e.g., Fukunaga, 
1990), lhis method destroys a separation bclwcen tile pattern classes sometimes. 

In Sammon mapping technique, one seeks for a new direction y~ = t,x, thal 
separates the training-sets of opposite classes at best. For this Sanunon (1966) has 
used a standard Fisher linear discriminant (DF), In the second step, one constructs 
an orthonormal 2x p matrix T2 = (t~' t2')'. Note, two components of the p-varialc 
vector t~ can be chosen arbitrarily. Further, one performs a transformation y2 = t:x. 
In the third step, one seeks a new direction y3 = t,x where the training sets of the 
opposite classes are separated at best, forms a new (p-2)-variate space orthogonal to 
y~ and Y2. This procedure is continued until a required dimensionality of the new 
transformed data is obtained. 

Methods of the best and worst directions. The principal component method 
does not take into account the separability of the pattern classes, and therefore often 
destroys the separation of the pattern classes. The Sammon method performs well in 
case, when the pattern classes are unimodal, and the Fisher DF is a good 
classification nile for this kind of the data. The main objective of the MLP classifier 
is to construct nonlinear discriminat decision boundaries, where the pattern classes 
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are not linearly separable. In such situations, the Sammon feature extraction method 
call fail to obtain a small number highly informative new features. Therefore we 
suggest two new feature mapping techniques based on nonparametric density 
estimation. 

Fukunaga (1990) describes a method to find the most informative directions 
y, = t,x. To evaluate the informativeness he uses the Parzen window (PW) estimate 

)=! N~ 
f ( Y , l  7ti Y~ exp{- (y,  . (0,,,... (O,,a2 "Ysj ) Le'Ysj }'~" },  (1) 

Ni j=  1 

where ~. is a smoothing constant, and a sum of squares error function 
A ^ 

ZE ( ( f 0 ' ,  (j) (o j I rq ) - f ( y ,  j I rt2 ))~. (2) 
t j 

The criterion (2) is different from a probability of misclassification - a main 
objective in the classifier design. It can lead to errors in determination of the best 
discriminative directions. Therefore, instead of seeking for the best discriminautivc 
directions, we decided to seek for the worst ones. When in the new direction y, = t,x, 
the pattern classes differs negligibly, errors in inexact determinations of scperability 
by (2) are small. We hope, after sequential application of this procedure p-2 times 
remaining 2 directions will separate the pattern classes in a good way. We call this 
new original method - a method of  the worst directions. The gradient descent 
optimization technique was used to find a minimum of the criterion (2). 

In our research, we also modified the Fukunaga's nonparametric method of  the 
best directions by introducing a new fast nonparametric feature informativeness 
measure. The nonparametric quality criterion is a multiextremal one. Therefore, in 
order to find the new directions quickly, we used a random search optimization 
technique. This algorithm appeared the most sucessful while applying to complex 
structured multimodal data, and is described in the third section with more details. 
An experimental comparison of the four feature mapping techniques is performed in 
the fourth section. 

3. A method of the best directions 

Main requirements to the feature extraction method for the active MLP 
initialization is an ability do discriminale multimodal complex shaped pattern 
classes in the bi-variate space, and a high speed. We used this approach to initialize 
the network, which will be trained afterwards. Later, we add the new informative 
directions. Thus, we can state weaker requirements to the seperability of the pattern 
classes just at the very beginning of the training process. 

In our research, we have tested following feature informativeness methods: 
a) the sum of squares error function (2), 
b) the classification error estimated by the nearest neighbour rule in the leaving- 

one-out mode, 
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c) a function of distances between cluster centres c~ and c2~ of the first and the 
ral m2 l 

second pattern classes E Z , where the cluster ccntrcs clt and 
t = l j = l  0 .00001 + d(Cll ,c21 ) 

c2~ have been found by the k-means clustering algorithm (see e.g. Fukunaga, 1990), 
and m~, rn2 are the number of clusters in the learning-sets of the first and second 
class, respectively. 

d) a number of the learning-set vectors which have changed their cluster 

O) into the two-variate space membership after transforming the p-variale vectors x / 

of lhe "best seperability". In the last two criteria, we have rejected clusters that 
contained less than 3 learning-set vectors. 

Our simulation studies performed by using a number of artificial and real-world 
data sets have shown that all four criteria can be usefid in detecting the data 
structures in the two-variate space. The first two criteria are rather slow and 
impractical while applied to high-dimensional data sets. When the number of 
clusters in each pattern class reaches 15-20, the fourth criterion is pretty fast, and 
aUows to reveal complicated data structures of complex mulimodal data sets. 
Therefore, this criterion was chosen as a main one in our research work. 

All criteria are nonparametric in their nature and, at the same time, they are 
multiextremal ones. Their direct gradient type minimization does not lead to a global 
minimum. Therefore, in order to find new informative directions quickly, we used a 
ramtom search optimization technique performed in an iterative way. in iteration (~, 
we modified the Iransforn|ation 2x p nmtrix "F2(,) = It,~',t:~'l '  by adding a small zero 
mean symmetrical noise, composed from a mixture of Gaussian components 
differing in their variances. The fastest convergence was achieved when we added a 
noise only to two components of each transformation vector (t~,~ or t2~). In each 
iteration, we generated m,~t,r =1000 new vectors, estimated the criterion (d) for all of 
them, and then - choosed the best one. Then tile variance of the noise was reduced, 
and a next, (o~+l)-th, iteration was performed. As a starting vector T:(o) we used: a) a 
random hyperplane that contains three randomly chosen points of the learning-set, b) 
a best hyperplane selected from mo=1000 random ones, c) a best pair of original 
variables, d) the optimal Sammon's hyperplane, e) the best two eigendirections. The 
second, (b), strategy was most successful. 

4. An experimental comparison of four mapping techniques 

In order to reveal positive and negative peculiarities of the four feature mapping 
techniques investigated, we performed a number of simulation experiments by using 
both artificial and real-world data sets. 

Types of the artificial data sets. 
a) the pattern classes are a mixtures of Gaussian N(p.~, 7.) components in a bi- 

variale space; E =l(l-p)+Ep (E is pxp matrix composed from ones, and p is a 
correlalion coefficient). Remaining p-2 features are Gaussian N(O, icr2). Then the 
data was rotated by a random orthogonal transformation Trof. Different combination 
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of the parameters p, p~, ~2, p were lested. As an extreme model of this calcgory, we 
menlion a model where all lime means P-lb I-t21, Pq2 are siluated on a straight line, and 
any linear classification method is useless. 

b) the first two features are gencmled in the same way as in a). Remaining p-2 
features are functions of the first two first features, and, in addition, the Gaussian 
N(0, I~ 2) noise is added. Different combinations of the parameters p, p., u 2, p, and 
the p-2 feature generation formulae were tested, 

c) the first two features are spherical Gaussian density split into two pattern 
classes by a highly non-linear boundary (a contour of a palm, saw, e.t.c). A gap (a 
margin) between the pattern classes was formed, and the data was rolatcd, 
nonlinearly folded, and a small noise was added to remaining p-2 fealnres. 

The real-worhl data sets. 
a) a vowels data; 28 spectral and cepstrai features; in one pattern class we had 

400 vowels pronounced by 20 speakers, 
b) a lung noise data; 66 speclral and cepslral fealures; in one pallern class we 

had 180 vectors measured on 18 patients, 
c) 47-variate data representing zernike moments for hand-written digits "3" 

and "8" recognition, 
d) 51-variate data representing 51 discrete signal measurements used for a 

blind signal (a pulse signal, and a noise) separation, 
e) 64 velocity and acceleration characteristics of machines vibration used for 

their classification into "good" and "bad" ones. The training-set contains Nu = 63, 
N2t = i 51 vectors, and the test-set - Nit = 45, N2t = 145 vectors. 

The four mapping techniques under investigation were applied to the artificial 
and the real-world data sets. Obviously, for each mapping technique one can 
construct such artificial data set for which this particular mapping technique 
outperforms the other methods. All four mapping methods can reveal the data 
structure only in cases where the data seperability is hidden in a subspace of 
dimensionality two. 

The principal component method is fast and performs very well if all data 
structure is contained in a hyperplane, and the data variances in all other directions 
are small. The Sammon method is as fast as the principal componenl method, and 
reveals the seperability of unimodal pattern classes comparatively well. This method, 
however, fails if the optimal decision boundary is highly nouliuear one. The method 
of the worst directions allows to detect the nonlinearity of the discriminant 
hyperboundary, however a present, the gradient minimization based version of this 
method is very slow and impractical for high-dimensional applications. The method 
of the best directions is rather fast, and allows to detect the nonlinearity of the 
discriminant hyperboundary. Apparently, this method can be improved by using 
more sophisticated optimization algorithm. 

As typical example of a difficult task in the feature mapping we present in Fig. 1 
a, b, c, d four scatter diagrams of the learnipg-sets of the machines vibration data 
mapped into two-dimensional space by: the principal component method, Ihe 
Sammon method, the method of lhe best directions just after start (the first mo= 1000 
random generations), and at the very end of the iteration process. 
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Fig. 1. Scatter diagrams of the learning-sets of the machines vibration data mapped 
into two-dimensional space by: the principal component method (a), the Sammon 
method (b), the method of the best directions: c (at the start), and d (at the end). 

5. Experiments with MLP weights initialization 

The active weights initialization procedure. We tested several principal 
possibilities of the active weights initialization in tile two variate feature space. At 
first, while applying the MLP classifier, we had drawn a piecewise decision boundary 
on a computer screen in an interactive regime by using a mouse, and then we 
calculated the MLP hidden layer weights corresponding to each segment of the 
piecewise linear decision boundary. Afterwards, we were keeping the weights of the 
hidden layer constant, and trained only tile weights of the output layer. We have 
found this approach to be ineffective. 

Much more effective is a use of the piecewise linear, operator controlled, 
decision boundary to classify the training-set vectors, and then to select only 
correctly classified vectors. We use these vectors for the MLP initialization by 
conventional back propagation training. In many practical problems, the training-set 
is small. Therefore, we were adding a small zero mean and small variance Gaussian 
noise to each training vector several times, and in such a way we multiplied 
(regularized) the training-set. Theft we classified the new bi-variate training-set by 
our "operator designed" piecewise linear decision boundary and presented for the 
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MLP classifier initialization only correctly classified vectors - the regularized and 
edited training-set. 

As a third technique of the active weight initialization we used a simple 
multistart training of the MPL classifier with a subsequent selection of the best 
variant, and an operator controlled pruning of unnecessary hidden layer neurones in 
the bi-variate space. This technique appeared to be highly efficient. 

As an illustration in Fig. ld, we present the MLP classifier nonlinear decision 
boundary obtained in one of the experiments with the machines vibration data. 
Straight lines represent boundaries corresponding to each single neurone, and a 
nonlinear line - to a desision bot, ndary of MLP. We see, several hidden neurones can 
be rejected without any damage to tile performance of the non-linear MLP classifier. 

Results. We used two dozens of  artificial and five real data sets to test feature 
extraction algorithms and the active MLP initialization procedures. It is not difficult 
to construct artificial data sets where lhe active iniiializalion is a nsefid 1ooi. In four 
experiments with the real-world data sets oul from five ones, however, our approach 
resuitcd a small or practically no gain in comparison with the conventional (random) 
MLP classifier initialization. A reason is very simple - for these four real-world 
problems the linear classifier was good enough to obtain a good separation of the 
pattern classes. There use of the MLP classifier instead of the single layer perceptron 
did not allow to reduce the generalization error substantially. The fifth real-world 
data set, however, required the non-linear decision boundary: the Fig. 1 d shows that 
good machines are situated in a centre, and bad ones are outside. The successful 
mapping of tile data into the bi-variate space by means of the method of the best 
directions helps to choose a good architecture of the network and to reduce the 
generalization error. A part of our experimental results of application of different 
initialization strategies are presented in Table 1. 

Table 1. Classification errors (in percents) and standard deviations of MLP classifier. 

Feature space, initialization method Training-set # 

!. Original 64 feature space, random initialization 0.5 
2. 6 principal componenls space, random initializalion 0.0 
3. 6 best Sammon's directions, random initialization 0.0 
4. Individually best 6 features, random initialization 1.0 
5. Best 6 directions, random initialization 0.0 
6. Best 6 directions, active initializalion 0.0 

Test-set 

12.5 (0.9) 
13. I (0.4) 
13.6 (0.6) 
10.8 (0.9) 
11.6(!.1) 
7.5 (0.7) 

A selection of six individually best features was performed using criterion d) - 
the number of the learning-set vectors which have changed their cluster membership 
after the feature transformation into one-variate spaces. From the Table 1 we see that 
initialization and training the MLP in the two-variate space obtained by using the 
non-parametric criterion t0 and subsequent increase in the number of dimensions up 
to 6 is much more effective than use of the conventional parametric the feature 
mapping and tile perceptron initialization techniques. 
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6. C o n c l u s i o n s  

A general conclusion which can be drawn from our investigation is rather trivial 
- the successful feature space reduction, and the network's initialization with 
subsequent its training in the low-dimensional space speeds up the training process 
and reduces the generalization error. The active initialization of the feedforward 
network in the bi-variale mapped space is useful only when the data structure really 
is hidden in a subspace of dimensionality two, and when one needs to design a 
highly non-linear decision boundary. We have met such situation only in one real 
world problem out of five problems investigated. 

The principal component and the Sammon melhods are fast. In practical 
situations, the principal component method with the small number of the first 
components usually fails to reveal separabilily of the pattern classes. The same can 
be said about the Sammon method, when pattern classes are described by complex 
nmllimodal distributions. Our ~lcw method of lhe worst directions performs well 
when oilier two classical melhods mistire, but is very slow. The method of the best 
directions is comparatively fast and allows to reveal complex slrtlclure of the data 
distributions. However, it should not be applied in simple situations. 

For practical applications, we recommend to use the Sammon method at first, 
and the nonparametric method of the best directions later, if the first of them fails. 
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