Skip to main content

Voxel based Monte Carlo calculations of nuclear medicine images and applied variance reduction techniques

  • 1. Image Formation And Reconstruction
  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 511))

Abstract

Due to the availability of digitally stored human anatomy images, 3-dimensional surfaces of internal structures of the body can be stored in computer volume arrays. Such a volume based software phantom delineates internal human organs with millimeter resolution and lends itself to fully 3-dimensional Monte Carlo simulations. Our simulation models 45 internal human organs (each with an associated radioisotope concentration and attenuation coefficient), calculates gamma radiation histories through these structures, and accepts gamma events onto a collimated planar camera. Variance reduction techniques are applied to decrease the time required to compute a given number of events at the detector. Stratification and two implementations of forced detection variance reduction techniques are compared to ”brute force” calculations for their efficiency speed-ups in this heterogeneous geometry. Simulated clinical images of the liver are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acchiappati D, Cerullo N, Guzzardi R (1989). Assessment of the Scatter Fraction Evaluation Methodology using Monte-Carlo Simulation Techniques. European Journal of Nuclear Medicine N11:683–686.

    Google Scholar 

  • Barnea G, Dick CE (1986). Monte Carlo studies of x-ray scatterings in transmission diagnostic radiology. Med Phys 13(4):490–5.

    Google Scholar 

  • Beck JW, Jaszczak RJ, Coleman RE, Starmer CF, Nolte LW (1982). Analysis of SPECT Including Scatter and Attenuation Using Sophisticated Monte Carlo Modeling Methods. IEEE Transactions on Nuclear Science, NS-29(1):506–511.

    Google Scholar 

  • Berger MJ, Seltzer SM. National Academy of Science — National Research Council Publ. 1133 (Nuclear Science Series Report no. 39) pp. 205–268.

    Google Scholar 

  • Bice AN, Links JM, Wong DF, Wagner HN (1985). Absorbed fractions for dose calculations of neuroreceptor PET studies. Eur J Nucl Med 11(4):127–131.

    Google Scholar 

  • Boyer AL, Mok EC (1986). Calculation of photon dose distributions in an inhomogeneous medium using convolutions. Med Phys 13(4):503–9.

    Google Scholar 

  • Chan HP, Doi K (1985). Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies. Med Phys 12(2):152–65.

    Google Scholar 

  • Cunningham JR, Woo M, Bielojew AF (1986). The dependence of mass energy absorption coefficient ratios on beam size and depth in phantom. Med Phys 13(4):496–502.

    Google Scholar 

  • Dale RG (1982). A Monte Carlo derivation of parameters for use in the tissue dosimetry of medium and low energy nuclides. Br J Radiol 55(658):748–57.

    Google Scholar 

  • Dale RG (1983). Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides with particular reference to I-125. Med Phys 10(2):176–183.

    Google Scholar 

  • Dance DR, Day GJ (1984). The computation of scatter in mammography by Monte Carlo methods. Phys Med Bio 29(3):237–47.

    Google Scholar 

  • Eckerman K, Ryman J: ALGAMP, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tenn.

    Google Scholar 

  • Floyd CE, Jaszczak RJ, Greer KL, Coleman RE (1985). Deconvolution of Compton scatter in SPECT. J Nucl Med 26(4):403–8.

    Google Scholar 

  • Floyd CE, Jaszczak RJ, Greer KL, Coleman RE (1986). Inverse Monte Carlo as a Unified Reconstruction Algorithm for ECT. J nucl Med 27(10):1577–85.

    Google Scholar 

  • Floyd CE, Jaszczak RS, Harris CC, Coleman RE (1984). Energy and spatial distribution of multiple order Compton scatter in SPECT. A Monte Carlo investigation. Phys Med Bio 29(10):1217–30.

    Google Scholar 

  • Floyd CE, Jaszczak RJ, Greer KL, Coleman RE (1987). Brain Phantom: high resolution imaging with SPECT and I-123.” Radiology 164(1):279–81.

    Google Scholar 

  • Haynor DR, Harrison PL, Lewellen TK, Bice AN, Anson CP, Gillespie SB, Miyaoka RS, Pollard KR, Zhu JB (1990). Improving the Efficiency of Emission Tomography Simulations Using Variance Reduction Techniques. IEEE Transactions on Nuclear Science. 37(2):749–753.

    Google Scholar 

  • Hickernell TS, Barrett HH, Barber HB, Woolfenden JM, Hall JN (1990). Probability modeling of a surgical probe for tumor detection. Phys Med Bio, 35(4):539–559

    Google Scholar 

  • Jenkins TM, Nelson WR, Rindi A (1988). Variance Reduction Techniques in Monte Carlo Transport of Electrons and Photons. Plenum Press.

    Google Scholar 

  • Kahn H (1954). Report AECU — 3259 pp. 64–65.

    Google Scholar 

  • Kalos MH, Whitlock PA 1986. Monte Carlo Methods Volume I. John Wiley and Sons.

    Google Scholar 

  • Kanamori H, Nakamori N, Inone K (1985). Effects of Scattered x-rays on CT images. Phys Med Bio 30(3):239–49.

    Google Scholar 

  • Kijewski PK, Bjarngard BE, Petti PL (1986). Monte Carlo calculations of scatter dose for small field sized in a Co-60 beam. Med Phys 13(1):74–7.

    Google Scholar 

  • Logan J, Bernstein HJ (1983). A Monte Carlo simulation of Compton scattering in positron emission tomography. J Comput Assist Tomogr 7(2):316–20.

    Google Scholar 

  • McMaster WH, Del Grande NK, Mallett JH, Hubble JH: UCRL 50174, II Rev. I.

    Google Scholar 

  • Mackie TR, Scrimger JW, Battista JJ (1985). A convolution method of calculating dose for 15 MV x-rays. Med Phys 12(2):188–96.

    Google Scholar 

  • Mohan R, Chui C, Lidofsky L (1986). Differential pencil beam dose computation model for photons. Med Phys 13(1):64–73.

    Google Scholar 

  • Morin RL 1988. Monte Carlo Simulation in the Radiological Sciences. CRC Press.

    Google Scholar 

  • Persliden J, Carlsson GA (1984). Energy imparted to water slabs by photons in the energy range 5–300 keV. Calculations using a Monte Carlo photon transport model. Phys Med Bio 29(9):1075–88.

    Google Scholar 

  • Rowe RK, Barrett HH, Patton DD (1990). Design Study For a Stationary 3-D Spect Brain Iamging System. J Nucl Med, 31(5):769

    Google Scholar 

  • Snyder W, Ford MR, Warner G (1978). Estimated of Specific Absorbed Fractions for Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous phantom. NM/MIRD Pamphlet No. 5 Society of Nuclear medicine Publication.

    Google Scholar 

  • Sorenson JA, Phelps ME (1987). Physics in Nuclear Medicine, Second Edition. Grune and Stratton.

    Google Scholar 

  • Williams G, Zankl M, Abmayr W, Yeit R (1986). The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods. Phys Med Bio 31(4):449–52.

    Google Scholar 

  • Williamson JF, Morin RL, Khan FM (1983). Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry Phys Med Bio 28(9):1021–1032

    Google Scholar 

  • Williamson JF, Morin RL, Khan FM (1983). Dose calibrator response to brachytherapy sources: A Monte Carlo and analytic evaluation. Med Phys 10(2):135–140.

    Google Scholar 

  • Woolfenden JM, Barber HB (1990). Design and Use of Radiation Detector Probes for Intraoperative Tumor Detection Using Tumor-Seeking Radiotracers. Nuclear Medicine Annual. Raven Press

    Google Scholar 

  • Zubal G, Gindi G, Lee M, Harrell C, Smith E (1990). High Resolution Anthropomorphic Phantom for Monte Carlo Analysis of Internal Sources. Proceedings of the Third Annual IEEE Symposium on Computer-Based Medical Systems, Chapel Hill, NC. June 3–6:540–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan C. F. Colchester David J. Hawkes

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zubal, G., Harrell, C. (1991). Voxel based Monte Carlo calculations of nuclear medicine images and applied variance reduction techniques. In: Colchester, A.C.F., Hawkes, D.J. (eds) Information Processing in Medical Imaging. IPMI 1991. Lecture Notes in Computer Science, vol 511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033739

Download citation

  • DOI: https://doi.org/10.1007/BFb0033739

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54246-9

  • Online ISBN: 978-3-540-47521-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics