Skip to main content

Saddle point techniques in asymptotic coding theory

  • Conference paper
  • First Online:
Algebraic Coding (Algebraic Coding 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 573))

Included in the following conference series:

Abstract

We use asymptotic estimates on coefficients of generating functions to derive anew the asymptotic behaviour of the volume of Hamming spheres and Lee spheres for small alphabets. We then derive the asymptotic volume of Lee spheres for large alphabets, and an asymptotic relation between the covering radius and the dual distance of binary codes.

This work was partially performed while this author was visiting Brown University, Providence, R.I., U.S.A. The author also acknowledges the support of the PRC Mathématique-Informatique (CNRS) and of ESPRIT-II Basic Research Action No. 3075 (project ALCOM).

This work was partially supported by the PRC C3 (CNRS and MRT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Astola, “On the Asymptotic Behaviour of Lee codes,” Discr. Appl. Math, Vol. 8, pp. 13–23 (1984).

    Article  Google Scholar 

  2. E.R. Berlekamp, Algebraic Coding Theory, Aegean Park Press (1984).

    Google Scholar 

  3. H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Hermann (1961).

    Google Scholar 

  4. H.E. Daniels, “Saddlepoint Approximation in Statistics,” Ann. Math. Stat., Vol. 25, pp. 631–650 (1954).

    Google Scholar 

  5. P. Henrici, Applied and Computational Analysis, Wiley (1977).

    Google Scholar 

  6. D. Gardy, Bases de données, allocations aléatoires: quelques analyses de performances, Thèse d'Etat, Université Paxis-Sud, Orsay (1989).

    Google Scholar 

  7. I.J. Good, “Saddle point methods for the multinomial distribution,” Ann. Math. Stat., Vol. 28, pp. 861–881 (1957).

    Google Scholar 

  8. D.H. Greene, D.E. Knuth, Mathematics for the analysis of algorithms, Birkhäuser Verlag (1982).

    Google Scholar 

  9. W.K. Hayman, “A generalisation of Stirling's formula,” Journal für die reine und angewandte Mathematik, Vol. 196, pp. 67–95 (1956).

    Google Scholar 

  10. P. Solé, K. G. Mehrothra, “A Generalization of the Norse Bound to Codes of Higher Strength,” IEEE Trans. Information Theory, IT-37, pp. 190–192 (1991).

    Article  Google Scholar 

  11. A. Tietäväinen, “An Upper Bound on the Covering Radius as a Function of the Dual Distance,” IEEE Trans. Information Theory, IT-36, pp. 1472–1474 (1990).

    Article  Google Scholar 

  12. J. H. van Lint, Introduction to Coding Theory, Springer, Graduate Texts in Math. 86 (1982).

    Google Scholar 

  13. H.S. Wilf, Generatingfunctionology, Academic Press (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Antoine Lobstein Gilles Zémor Simon Litsyn

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gardy, D., Solé, P. (1992). Saddle point techniques in asymptotic coding theory. In: Cohen, G., Lobstein, A., Zémor, G., Litsyn, S. (eds) Algebraic Coding. Algebraic Coding 1991. Lecture Notes in Computer Science, vol 573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034343

Download citation

  • DOI: https://doi.org/10.1007/BFb0034343

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55130-0

  • Online ISBN: 978-3-540-46739-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics