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Abstract. A categorial semantic domain for general (discrete event) systems based on labeled
transition systems with full concurrency is constructed, where synchronization and hiding are
functorial. Moreover, we claim that, within the proposed framework, a class of mappings
stands for refinement. Then we prove that refinement satisfies the diagonal compositionality
requirement, i.e., refinements compose (vertical) and distribute over system composition
(horizontal).

1 Introduction

We construct a semantic domain for interacting systems which satisfies the diagonal
compositionality requirement, i.e., refinements compose (vertically), reflecting the stepwise
description of systems, involving several levels of abstraction, and distributes through
combinators (horizontally), meaning that the refinement of a composite system is the
composition of the refinement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal
papers like [17], [11] and [15]) it was clear that nets might be good candidates. However,
most of net-based models such as Petri nets in the sense of [14] and labeled transition
systems (see [12]) lack composition operations (modularity) and abstraction mechanisms in
their original definitions. This motivate the use of the category theory: the approach in [17]
provides the former, where categorical constructions such as product and coproduct stand
for system composition, and the approach in [11] provides the later for Petri nets where a
special kind of net morphism corresponds to the notion of implementation. Also, category
theory provides powerful techniques to unify different categories of models (i.e., classes of
models categorically structured) through adjunctions (usually reflections and coreflections)
expressing the relation of their semantics as in [15].

We introduce the concept of (nonsequential) automaton as a kind of automaton
structured on states and transitions. Structured states are "bags" of local states like tokens in
Petri nets and structured transitions specify a concurrency relationship between component
transitions in the sense of [3] and [7]. In [9] we show that nonsequential automata are more
concrete then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of
nonsequential automata) extending the approach in [15], where a formal framework for
classification of models for concurrency is set.

The resulting category is bicomplete where the categorial product and coproduct stand
for (system) composition. Synchronization and hiding are functorial operations. A
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synchronization restricts a (system) composition according to some given interaction
specification. A view of a system is obtained through hiding of transitions introducing an
internal nondeterminism. A hidden transition cannot be used for interaction.

A refinement mapping maps transitions into transactions reflecting an implementation of
a system on top of another. It is defined as an automaton morphism where the target object
is enriched with all conceivable sequential and nonsequential computations. Computations
are induced by an endofunctor ¢c (transitive closure) and composition of refinements : N4
— tcNo, W: N2 — tcNj is defined using Kleisli categories as illustrated in the Figure 1.

Yoo
N1uuu||||umuummul"lll- tCNa
(pl T |
flattening
tey
ttNog —————p t2N3

Fig. 1. Composition of refinements

Therefore, refinements compose, i.e., the vertical compositionality requirement is
achieved. Moreover we find a general theory of refinement of (discrete) systems which also
satisfies the horizontal compositionality requirement. i.e., for refinements ¢: Ny — tcMy,
Y: No — tc Mo, we have that:

ON1xYN2 = @x (N1 xNp)
where QN xWYN5 and N{xN, are composed systems and the refinement @ X is
(uniquely) induced by ¢ and .
Note that, while the vertical compositionality is easily achieved in several models, they
lack horizontal compositionality (see [9] for Petri nets and [10] for transition systems).

2 Nonsequential Automata

A nonsequential automaton is a reflexive graph (a graph with an endoarc for every node)
labeled on arcs such that nodes, arcs and labels are elements of commutative monoids. A
reflexive graph represents the shape of an automaton where nodes and arcs stand for states
and transitions, respectively, with endoarcs interpreted as idle transitions. The labeling
procedure allows the occurrence of more then one transition with the same label. A
structured transition specify a concurrency relation between component transitions.
Comparing with asynchronous transition systems (first introduced in [3]), the independence
relation of a nonsequential automaton is explicit in the graphical representation. A structured
state can be viewed as a "bag" of local states where each local state can be viewed as a
resource to be consumed or produced, like a token in Petri nets.

Nonsequential automata and its morphisms constitute a category which is complete and
cocomplete with products isomorphic to coproducts. A product (or coproduct) can be
viewed as (system) composition. In what follows CMon denotes the category of
commutative monoids and suppose that K is in {0, 1}.

Definition 2.1 Nonsequential Automaton. A nonsequential automaton N = (V, T, dg, 91, 1,
L, lab) is such that T=(T, I,7T), V={(V, &, e), L={(L, |, T) are CMon-objects of transi-
tions, states and labels respectively, dg, d1: T — V are CMon-morphisms called source and
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target respectively, 1: V — T is a CMon-morphism such that dx°ol = idy and lab: T — L is
a CMon-morphism such that lab(t) = T whenever there is v in V where 1(v) = t. Q

We may refer to a nonsequential automaton N = (V, T, do, 91, 1, L, lab) by N = (G, L,
lab) where G = (V, T, dg, 91, 1) is a reflexive graph internal to CMon (i.e., V, T are
CMon-objects and do, 91, L are CMon-morphisms).

In an automaton, a transition labeled by T represents a hidden transition (as we will see
later, a hidden transition is encapsulated and therefore, can not be triggered from the
outside). Note that, all idle transitions are hidden. The definition above is not extensional in
the sense that two distinct transitions with the same label may have the same source and
target states. In this paper we are not concerned with initial states.

A transition t such that do(t) = X, d4(t) = Y is denoted by t: X — Y. Since a state is an
element of a monoid, it may be denoted as a formal sum n{A1®...&nyL A, with the order
of the terms being immaterial, where A;is in V and n; indicate the multiplicity of the
corresponding (local) state, for i = 1...m. The denotation of a transition is analogous. We
also refer to a structured transition as the parallel composition of component transitions.
When no confusion is possible, a structured transition X [T: XA — Y®A where t: X - Y
and 1A: A — A are labeled by x and 7T, respectively, is denoted by x: X®@A — Y®A. For
simplicity, in graphical representation, we omit the endotransitions. A state
N1A1®...en,An, and a labeled transition nqtql...Inyty, are graphically represented as in

the Figure 2.
n1A1®...€BnmA nqty [ ...Ilnmtm

Fig. 2. Graphical representation of structured states and transitions

Example 2.2 The graphical representation of an automaton N = {({X, Y}, {a, b, 1x, 1y}!:
90, 91, 1, {X, y}!, lab) with free monoids determined by the local transitions a: 2X — Y, b:

2X — Y and with labeling given by a — x, b ~ y is illustrated in the Figure 3. a
X y X y 4X

Fig. 3. Graphical representation of a nonsequential automaton

Considering the monoidal structure of nonsequential automata and since in this paper we
are not concerned with initial states, the schema above has an infinite number of distributed
diagrams. If an initial state is considered, only the corresponding diagram may be drawn.
For instance, in the example above, if the initial state is 4X then the schema could be
reduced to the rightmost diagram in the Figure 3.
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Comparing the graphical representation with the one for Petri nets (see, e.g., [14]), in a
nonsequential automaton all possible states are explicit while in Petri nets the reachable
markings are implicit. Also, the concurrency relation between transitions in Petri nets is
implicit. Both models, categories of Petri nets and categories of nonsequential automata can
be unified through adjunctions. For details, see [9].

Remark 2.3 Non-Reflexive Automata. If we define the category of non-reflexive automata
(with source, target and labeling preserving morphisms) the product construction reflects a
composition operation with (total) synchronization in the sense that each transition of the
first automaton is synchronized with all transitions of the second. This construction has very
few practical applications. a

Remark 2.4 Structured Transition X Independence Square. Consider the Figure 4. Let a: A
— B, x: X = Y be two transitions of some automaton. Then, alx: A@X — B®Y, a: A®X
— B®X, a: A@QY — BAY, x: A®X — AQY, x: B&X — BAY are also labeled transitions

of the same automaton. This leads to the "independence square" associated to the structured
transition alx, i.e.:

a) if two transitions can fire independently from the same source state, then they should be
able to fire concurrently and doing so, reach the same target state;

b) if two independent transitions can fire, one immediately after the other, then they should
be able to fire with interchanged order. a

a ADX X

X BAY, a

Fig. 4. Independence square

Definition 2.5 Nonsequential Automaton Morphism. A nonsequential automaton morphism
h: N1 — N2 where N1 = (Vy, Ty, doq, 911, U1, L1, 1abq) and No = (Va, T, dg», 912, 12,
Lo, laby) is a triple h = ¢(hy, hT, hy) suchthat hy: Vi — Vo, h1: Ty —» To, hp: L1 — Lo
are CMon-morphisms, hy °dky = dkp °hT, hT°14 = 1z°hy and h| claby = labzeht. O

Nonsequential automata and their morphisms constitute the category NAut.

Proposition 2.6 The category NAut is complete and cocomplete. Moreover products and
coproducts are isomorphic.
Proof: See [9]. a

A categorical product (or coproduct) of two automata N1 = (V¢, Ty, doq, 911, U1, L1,
lab1), N2 = (V2, T2, dop, 912, L2, Lo, 1aby) is as follows:

N1 XaautN2 = (V1Xcaton V2, T1XCMon T2, 901X 002, 911X 912, 11 X 12,
L1Xcaton L2, 1aby X labz)

where dky X ks, 11 X12 and labq X |aby are uniquely induced by the product construction.
Intuitively, the product in A4ut is viewed as a composition of component automata.
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Example 2.7 Consider the nonsequential automata N1 = ({A, B, C}®, {a, b, 1a, 1B, ¢}/’
01, 911, L1, {u}!, laby) and N2 = ({X, Y}®, {x, 1x, Ly} 9o, 912, 12, {V}!, labo) (free
monoids) where source and target morphisms are determined by the local transitions a: A —
B,b: B —» C, x: 2X — Y and with labeling given by @ » u,b — u, x — v. Then,
NyxN2 = ({A, B, C, X, Y}®, {a, b, X, 1A, 1B, LC, 1X, Ly} 99, 21, 1, {u, v}!, lab) with dg,
d1, 1, lab uniquely induced by the product construction is represented in the Figure 5. O

e u ASB u v

u 2u u u B@2X ullv A®Y

° v 2B 2u u v u |mmm=

u 2u u u ullv BaY
u v CcayY u

Fig. 5. Resulting nonsequential automaton of a product

3 Synchronization and Hiding

Synchronization and hiding of transitions are functorial operations defined using fibration
and cofibration techniques. Both functors are induced by morphisms at the label level.

The synchronization operation erases from the product all those transitions which do not
reflect some given table of synchronizations. The approach for synchronization is inspired
by [8] and is as follows (see the Figure 6):

a) let N1, N2 be nonsequential automata with L7, Lo as the corresponding commutative
monoids of labels;

b) let Table(Ls, L) be a table of synchronizations determined by the pairs of labels to be
synchronized and sync: Table(Lys, Lg) — L1 XLo be the synchronization morphism
which maps the table into the labels of a given automaton;

¢) let u: NAut — CMon be the obvious forgetful functor taking each automaton into its
commutative monoid of labels. The functor «is a fibration and the fibers w1 Table(L7,
Lp), ulL1XLpare subcategories of NAut,

d) the fibration u and the morphism sync induce a functor sync: wiliXLo—
u-1Table(Ly, L2). The functor sync applied to Ny X N2 provides the automaton
reflecting the desired synchronizations.

Traditionally, in concurrency theory, the concealment of transitions is achieved by
resorting to labeling and using the special label T (cf. [17]). Such hidden transitions cannot



Refinement Mapping for General (Discrete Event) Systems Theory 6

able ( 1L
Ni1llsyncN2

Fig. 6. Induced synchronization functor

be used for synchronization since they are encapsulated. The steps for hiding are the
following:

a) let N be a nonsequential automaton with L ; as the commutative monoid of labels;

b) let hide: Ly — Lobe a morphism taking the transitions to be hidden into T;

c) let u: NAut — CMon be the same forgetful functor used for synchronization purpose.
The functor #is a cofibration (and therefore, a bifibration) and the fibers u!Ls, ul Lo
are subcategories of AAut,

d) the cofibration u and the morphism hide induce a functor Aide: u1L; — ulLp. The
functor Aide applied to N provides the automaton reflecting the desired encapsulation.

3.1 Synchronization

In what follows, we show a categorial way to construct tables of synchronizations for event
calling and event sharing and the corresponding synchronization morphism.

Table of Synchronizations. The table of synchronizations for interaction is given by a
colimit of a "twin peaks" or "M" diagram (i.e., a diagram with the shape e<—e—e¢—o—e),
We say that a shares X if and only if a calls X and X calls a. In what follows, we denote by
alxa pair of synchronized transitions.

Definition 3.1 Table of Synchronizations. Let N1, N2 be nonsequential automata with L7,
L2 as the corresponding commutative monoids of labels and let i be in {1, 2}:

a) let Channel(L1, Lp) be the least commutative monoid determined by all pairs of
transitions to be synchronized,

b) let Lj'be the least commutative submonoid of L; containing all transitions of Nj which
call a transition of the other automaton;

¢) the morphisms calli: Lj'— Channel(Ly, Lo) are such that, for a in L;', if a calls x then
callia) = a|x.

Let M(L1, L2) be the twin peaks diagram represented in the Figure 7 where incj: L;'— L;

are the canonical inclusion morphisms. The table of synchronizations Table(Ly, Lp) is

given by the colimit of M(Ly, Lp). Q

From the definition above, we can infer that: (from ¢) call; are monomorphisms.
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""C/ \03"1\ 03"2

Channel(L, L2)

Table(L 1 L2)

Fig. 7. Table of synchronizations

Example 3.2 Consider the free commutative monoids of labels Ly = {a, b, ¢}, Lo = { x,
y}!. Suppose that a calls x, b calls y and y calls b (i.e., b shares y). Then,
Channel(Ly, L) = {alx, b|y}|| L1'={a, b}, Lo'= {y}! and Table(Ly, L2) = {c, X,
alx, bly}l. Q
Let M(Ly, L) be a twin peaks diagram whose colimit determines Table(Ls, Lp) and p:
Ly — Table(Ly, Lp),q: Lo — Table(Ly, Lp). Then there are retractions for p and q
denoted by pR and gR respectively as follows:
for every b in Table(Ly, L)),
if there is @ in L such that p(a) = b then pR(b) = a else pR(b) = v;
if there is @ in L2 such that g(a) = b then gqR(b) = a else qR(b) = v.
Definition 3.3 Synchronization Morphism. The synchronization morphism Sync:

Table(Ly, Lo) = L1 XLz is uniquely induced by the product construction as illustrated in
the Figure 8. a

CMon—
Table(L Lo i

pR qR

(2
§ LLLLULLL
o

[ [fns

L1<———— L1XL2 ——--»Le

Fig. 8. Synchronization morphism

Synchronization Functor. First we show that the forgetful functor which takes each
nonsequential automaton into its commutative monoids of labels is a fibration and then we
introduce the synchronization functor.

Proposition 3.4 The forgetful functor u: NAut — CMon that takes each nonsequential
automaton onto its underlying commutative monoid of labels is a fibration. Q
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Proof: Let RGr(CMon)be the category of reflexive graphs internal to CMon and let id:
RGr(CMon)— RGr(CMon), emb: CMon — RGr(CMon) be functors. Then, AAut can
be defined as the comma category idlemb. Let f: Ly — Lobe a CMon-morphism and N2 =
(Ga, Lo, laby) be a nonsequential automaton where Go = (V2, T2, dop, d1, 12) is a
RGr(CMon)-object. Consider the RGr(CMon }pullback represented in the Figure 9.
Define N1 = (G, Ly, lab{) which is an automaton by construction. Then u = {ug, f): N4

— Ny is cartesian with respect to f and No. o
err16 L2
laby emb f
Go emp Ly
p.b.
UG lab1
Gy

Fig. 9. Pullback

Definition 3.5 Functor sync. Consider the fibration u: NAut — CMon, the nonsequential
automata N1 = (V1, Ty, doy, 911, U, Ly, 1ab1), N2 = (V, T2, doy, 912, 12, L2, labz) and
the synchronization morphism sync: Table(Ly, Lp) — L1XLo. The synchronization of
N1, N2 represented by N1 |lsync N2 is given by the functor sync: wl(LixLs) —
ul(Table(Ls, Lp)) induced by uand sync applied to N1XNp, i.e.:

N1llsyncN2 is sync(NyXNg). ]
Example 3.6 Consider the nonsequential automata Consumer and Producer (with free
monoids) determined by the following labeled transitions:

Producer: prod: A — B,send: B— A
Consumer: rec: X - Y, cons:Y —» X

@ @ prod A®X cons
/ send | rec

prod cons AdY amm

+ prod | cons /
@ cons BaY prod

Fig. 10. Synchronized automaton

Suppose that we want a joint behavior sharing the transitions send and rec (a
communication without buffer such as in CSP [6] or CCS [12]). Then, Channel(Ly, L2) =
{send|rec}! and Table(Ly, L2) = {prod, cons, send | rec}!. The resulting automaton
is illustrated in the Figure 10. Note that the transitions send, rec are erased and send |rec
is included. Q
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3.2 Hiding

For encapsulation purposes, we work with hiding morphisms. A hiding morphism is in fact
an injective morphism except for those labels we want to hide (i.e., to relabel by T). In what
follows, remember that a monoid with only one element, denoted by &, is a zero object.

Definition 3.7 Hiding Morphism. Let L1 be the commutative monoid of labels of the
automata to be encapsulated, L be least commutative submonoid of L containing all labels
to be hidden and inc: L — L4 be the inclusion morphism. The hiding morphism hide: L4
— Lpis determined by the pushout illustrated in the Figure 11 where the morphism ! is
unique. ]

CMon —

Fig. 11. Hiding morphism

Proposition 3.8 The forgetful functor u: NAut — CMon that maps each automaton onto
its underlying commutative monoid of labels is a cofibration.

Proof: Let f: L1 — Lobe a CMon-morphism and N1 = (V, Ty, doq, 911, L1, L1, laby) be
an automaton. Define N2 = (V4, Ty, doy, 911, U1, L2, felaby). Then u = (idy,, idr,, f):
N1 — N2 is cocartesian with respect to f and N+. a
Definition 3.9 Functor hide. Consider the fibration u: NAut — CMon, the nonsequential
automata N = (V, T, do, 91, 1, Ly, lab) and the hiding morphism hide: L; — L. The
hiding of N satisfying hide denoted by N\hide is given by the functor Aide: u1Ls —
u1 [ 5induced by uand hide applied to N, i.e.,

N\hide = fideN a

Example 3.10 Consider the resulting automata of the Example 3.6. Suppose that we want to
hide the synchronized transition send | rec. Then, the hiding morphism is induced by
send|rec —~ 7 and the encapsulated automaton is as illustrated in the Figure 12. Q

4 Refinement

A refinement mapping is defined as a special automaton morphism where the target object is
closed under computations, i.e., the target (more concrete) automaton is enriched with all the
conceivable sequential and nonsequential computations that can be split into permutations of
original transitions, respecting source and target states. This transitive closure is easily
performed in Category Theory:
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prod A®X cons

/ T

prod cons AdY anm

+ prod| cons /
e @ cons B&Y prod

Fig.12. Encapsulated automaton

a) areflexive graph plus a composition operation on transitions determines a category;

b) there exists a (obvious) functor forgetting the composition operation;

¢) this functor has a left adjoint: a functor that freely generates a category from a reflexive
graph;

d) the composition of both functors determines an endofunctor taking each reflexive graph
onto its transitive closure;

e) the generalization of the above approach for nonsequential automata leads to the
envisaged transitive closure.

Therefore, a refinement of an automaton N on top of an automaton M is a morphism @:
N — tcM, where tc is the transitive closure functor. Automata and refinement morphisms
constitute a category (defined as a Kleisli category - see [2]) and thus, refinements compose.
Then we show that refinement distributes over (system) composition and therefore, the
resulting category of automata and refinements satisfies the diagonal compositionality.

In what follows, let CMonCat be the category of small strictly symmetric strict
monoidal categories which is complete and cocomplete with products isomorphic to
coproducts. Consider the functor idcafoncar: CMonCat — CMonCat and the comma

category idcafoncatdidcafoncar denoted by CMC L CMC. Note that the objects of
CMCL CMC are functors.

Definition 4.1 Functor u: CMCLCMC — NAut. The functor u: CMCLCMC — NAut is

such that for each CMCL CMC-object [: M — L we have that:

a) for M=V, T,0dg, 91, 1, 3), ®, €), uMis the RGr(CMon}object M = (V, ®, e), (T2,
@, o), 95, 07, 1) where Tais T subjected to the equational rule below and 88, ? ,
®2 are dg, 1, ® restricted to T2;

tASBeTE :A'3BeT® wWBCeT: WB—3CeT?
(Lu)@(t;u') = (t®t');(udL’)
b) for L=V, T, dg, 91, 1, 3), ®, €), uL is the CMon-object L ={L, &2, 1¢) where L =

Ta-{t | there is v in V such that 1(v) = t} and T2, &2 are as defined above;
c) lab: M — L is the labeling morphism canonically induced by £: M — L. Q

Besides forgetting about the composition operation, the functor u: CMCLCMC —
AAut has an additional requirement about concurrency:

(tu) I (t5uY) = (tIt);ulu)

That is, the parallel composition of two computations t;u and t';u’ has the same effect as
the computation whose steps are the parallel compositions tlt' and ullu'. As an illustration,
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lett: A — Band u: C — D be two computations. Then, for tlu: A@C — Ba&D, we have
that (in the following, we do not identify an endotransition by its label T):
’ thu = (ta;t) I (usip) = (Lallu);(tiip) = ust
tlu = ult = (Lo;u) I (ti) = (Lclt);(ulig) = tsu

Therefore, the concurrent execution of two transitions is equivalent to their execution in
any order. As a consequence, any computation t = t1lt21...Itn can be split as the sequential
composition of its local transitions, i.e. (suppose tj: Aj — Bj):

t=tyltall...lth = (t111Aq)5(t201A)5-5(tn 1 LAR) = t15t25..05t0

Definition 4.2 Functor f: NAut — CMCLCMC. The functor f: NAut = CMCLCMCis
such that:
a) for each A(4ut-object N = (M, L, lab) where M =(V, T, dg, 91, 1), V=(V, ®, €), T=

(T, 1,7), L={L, I, T) we have that:

a.l) fM is the CMonCat-object M = ((V, T¢, 85, aé’, L 3), (@, 1), e) where the
composition is a partial operation and T¢, dg, dy are defined by the following
rules of inference:

tAs>BeT t: A 2 Bie T B = G T°
t A>B e TC ti: Ar= € e T
tA=>B e T ECB5D e T
tluu A®C—>B®D e T°

subject to the following equational rules:

tt A>BeT®
ast =tand tj1g =t

A< BeT B3 Cel vC 35 DeT
ti(u;v) = (tu)v

teTC teT” ueT®
tt =t tu = ut

tellC e T2 ve T e
Wafie = taes t(ulv) = (thu)lv
a.2) fL is the CMonCat-object (({e}, LS, |, I, 1, ;), I, e) where L€ is defined as
above, ! is unique and 1 is such that 1(e) = 7T;
a.3) the functor freely generated by N = (M, L, lab) is flab: fM — fL;
b) for each A(Aut-morphism h = ¢hy, ht, hi) where ¢hy, hT) is a RGr(CMon)-
morphism and hi_is a CMon-morphism we have that:
b.1) f(hy, h1) is the CMonCat-morphism ¢hy, h%):fM1 — fMy where h% is
inductively defined as follows (suppose A, BinV and t, u in T):
hi(t) =l hi—(lA) =ty
h$(thu) = hS() | hS(u) h%(tu) = ()5 hS(u)
b.2) fhi is the CMonCat-morphism (!, hP’): fL1 — fLo where h{ is defined as
above. Q
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Proposition 4.3 The functor fis left adjoint to .

Proof: Consider MN: ida(qy+ — 1o f a natural transformation which is an embedding on
transitions (and corresponding labels). Thus, for each A4ut-object N = (M, L, lab), for
each CMCL CMC-object N= (M, L, [), for each AAut-morphism f: N — uA| there is
only one CMCLCMC-morphism g: /N — A(such that f = ug°nN. In fact g is just like ff
except that its target is Alinstead of fo u\ By duality, €: fo u— ideafcl cacis a natural
transformation which takes each freely composed transition (label) (t);{u) and (t)II{u) onto
the transition (label) (t;u) and (tlu), respectively. Thus, (f, u, M, €): N Aut >
CMCLCMCis an adjunction. Q

Let {f, u, M, €): NAut — CMCL CMC be the adjunction defined in the proposition
above. Then, T = (tc, M, W) is a monad on NAut, where tc = ue f: NAut — NAut is an
endofunctor and |l = u€ f: t¢? — tc is a natural transformation where u: u— u, f: f— f
denote the identity natural transformations and € fis the horizontal composition of natural
transformations. A monad is useful to understand the computations of an automaton: for an
automaton N, tcN reflects the computations of N, i.e., the transitive closure of N, \N: N —
tcN maps N into its computations and [LN: t¢?N — tcN flattens computations of
computations into computations.

Example 4.4 Consider the nonsequential automaton N4 with free monoids on states,
transitions and labels determined by the labeled transitions a: A — B and b: B — C. Its
transitive closure is represented in the Figure 13 (the transactions added by the transitive
closure are dashed). Note that transactions with "|" are in fact classes of transactions. For
instance, for a;2b: A@B — 2C we have that a;2b = (1gla);(blb) = (1g;b)l(a;b) =
bl(asb) = (bsic) I(tas(asb)) = (blia);(icl(asb)) = bsasb = ... Q

2a;b 3o a;2b

Fig. 13. Transitive closure of a nonsequential automaton

Definition4.5 Category RefNAut. Let T = (tc, M, W) be a monad on AAut induced by the
adjunction (£, u, M, €): NAut — CMCLCMC. The category of nonsequential automata
and refinement morphisms is the Kleisli category determined by T, denoted by RefNAut.Q
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Therefore, a refinement between two nonsequential automata N1 and N, denoted by ¢:
N1 = Ny, is a AAut-morphism @: A; — tcA, and the composition of given refinement
morphisms is the composition in RefANAut.

Example 4.6 Consider the nonsequential automaton N4 (previous example) and the
automaton No with free monoids on states, transitions and labels determined by the local
labeled transitions x: X — Y and y: Y — X. The refinement morphism @: Ny = Ny is
givenby A » 2X,B - 2Y,C - 2Y,a - xlxand b - 2y;x;y;2x. Q

In the next proposition, we prove that this construction also satisfies the horizontal
compositionality: refinement of systems distributes through system composition.

Proposition 4.7 Let {Q;: Nj = Mj}ic| be a family of refinement, with | a set. Then Xjc | @j:
Xie| Ni = Xic | M;.

Proof: For simplicity, we abbreviate Xjc| and +jc | by X; and +;, respectively Consider the
morphism X; @;: X;N; — X; tcM; uniquely induced by the product construction as illustrated
in the Figure 14. Now, we have only to prove that X; Q;: X;Nj = X; tcM; is a RefNAut-
morphism. Since tc= uo fand u is right adjoint we have that X; Q;: XjNj = u(X;fM;).
Moreover X;fN;' is isomorphic to +; #N;'. Thus, up to an isomorphism, X; @;: XjN; —
u(+fM;). Since fis left adjoint (and so, preserves colimits) we have that X; @;: X;N;j —
e f(+;M;). Since X; M; is isomorphic to +j M;, then X; Q;: X;N; — tc(X;M;) and thus, is a
RefNAut-morphism. Q

NAut —
Ni W xiel Ni i

<P¢ Xicl @i

thiW xie|'tCMi

Fig. 14. Refinement morphism uniquely induced

5 Concluding Remarks

We introduced a new semantic domain for (discrete event) system based on structured
labeled transition systems. Concepts and constructions like interaction, refinement and
hiding, not (fully) explained in other semantic domains, have now a precise mathematical
semantics.

Interaction of processes is categorically explained, by fibration techniques. Tables for
interaction are categorically defined. The hiding of events is also dealt with, by cofibration
techniques, introducing the essential ingredient of internal non-determinism. Refinement is
explained through Kleisli categories ensuring the envisaged levels of diagonal (vertical and
horizontal) compositionality.

With respect to further work, it should be clear that this may be the starting point of a
rather fruitful line of research on the semantics of discrete event systems around transition
systems and graph based models.
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