Skip to main content

Finite dimensional generalized baker dynamical systems for cryptographic applications

  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST '95 (EUROCAST 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1030))

Included in the following conference series:

  • 173 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, A. Avez. Ergodic Problems of Classical Mechanics. W.A. Benjamin, New York 1968.

    Google Scholar 

  2. Jürgen Moser. Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton 1973.

    Google Scholar 

  3. Paul Shields. The Theory of Bernoulli Shifts. The University of Chicago Press Chicago 1973.

    Google Scholar 

  4. M. Jeger. Einführung in die Kombinatorik I, II. Klett, Stuttgart 1973.

    Google Scholar 

  5. F. Pichler. Realisierung der λ-Transformation von Prigogine mittels dyadischer Faltungsoperatoren. österreichische Studiengesellschaft für Kybernetrik. Wien, Schottengasse 3, ISBN 3-852-06127-X. Dezember 1992. (52 pages)

    Google Scholar 

  6. J. Scharinger. Experimentelle harmonische Analyse von Bäcker-dynamischen 2D-Systemen und ihre Anwendung in der Kryptographie, Dissertation (Informatik). Institut für Systemwissenschaften, Universität Linz, September 1994. (174 pages, will be published)

    Google Scholar 

  7. S. Wolfram. Cryptography with Cellular Automata. Advances in Cryptology-CRYPTO '85 Proceedings, Berlin: Springer Verlag, 1986, pp. 429–432.

    Google Scholar 

  8. C.E. Shannon. Communication theory of secrecy systems. Bell Syst.Tech.J., 28,pp. 656–715.

    Google Scholar 

  9. N.J.A. Sloane. Encrypting by Random Permutations. in: Cryptography. Proceedings Burg Feuerstein, 1982 (ed. T. Beth). Lecture Notes in Computer Science, Berlin 1983, pp. 71–128.

    Google Scholar 

  10. J. Scharinger, F. Pichler. Bernoulli Chiffren. Elektrotechnik und Informationstechnik, 111. Jg. (1994) 11, pp. 576–582.

    Google Scholar 

  11. F. Pichler, J. Scharinger. Ciphering by Bernoulli-Shifts in finite abelian Groups. 1994. In: Contributions to General Algebra, Proc. of the Linz-Conference, June 2–5, 1994. (eds. H.K. Kaiser, W.B. Müller, G.F. Pilz), Hölder-Pichler-Tempsky Verlag (Austria) and B.G. Teubner, Stuttgart (Germany) (in print)

    Google Scholar 

  12. J. Scharinger. Verschlüsselung mit Bernoulli-Systemen. Institute of Systems Science, University Linz, internal technical report, July 22, 1993 (21 pages)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno Díaz Rudolf Albrecht

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pichler, F., Scharinger, J. (1996). Finite dimensional generalized baker dynamical systems for cryptographic applications. In: Pichler, F., Díaz, R.M., Albrecht, R. (eds) Computer Aided Systems Theory — EUROCAST '95. EUROCAST 1995. Lecture Notes in Computer Science, vol 1030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034782

Download citation

  • DOI: https://doi.org/10.1007/BFb0034782

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60748-9

  • Online ISBN: 978-3-540-49358-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics