Skip to main content

Introduction of the Aristotle's final causation in CAST concept and method of incursion and hyperincursion

  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST '95 (EUROCAST 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1030))

Included in the following conference series:

  • 137 Accesses

Abstract

This paper will analyse the concept and method of incursion and hyperincursion firstly applied to the Fractal Machine, an hyperincursive cellular automata with sequential computations where time plays a central role. This computation is incursive, for inclusive recursion, in the sense that an automaton is computed at the future time t+1 in function of its neighbour automata at the present and/or past time steps but also at the future time t+1. The hyperincursion is an incursion when several values can be generated at each time step. The incursive systems may be transformed to recursive ones. But the incursive inputs, defined at the future time step, cannot always be transformed to recursive inputs. This is possible by self-reference. A self-reference Fractal Machine gives rise to A non deterministic hyperincursive field rises in a self-reference Fractal Machine. This can be related to the Final Cause of Aristotle. Simulations will show the generation of fractal patterns from incursive equations with interference effects like holography. The incursion is also a tool to control systems. The Pearl-Verhulst chaotic map will be considered. Incursive stabilisation of the numerical instabilities of discrete linear and non-linear oscillators based on Lotka-Volterra equation systems will be simulated. Finally the incursive discrete diffusion equation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Dubois: Total Incursive Control of Linear, Non-linear and Chaotic systems. in G. Lasker (ed.): Advances in Computer Cybernetics. Int. Inst. for Advanced Studies in Syst. Res. and Cybernetics, vol. II, 167–171 (1995)

    Google Scholar 

  2. D. M. Dubois: ContrÔle-commande incursif d'un système chaotique. Bull. de l'A.I.LG, nℴ6–7, 11–12 (1994)

    Google Scholar 

  3. D. M. Dubois: Hyperincursivity: inclusive recursivity without time arrow. Proceedings of the 13th International Congress on Cybernetics, Namur, 152–156 (1992)

    Google Scholar 

  4. D. M. Dubois: The fractal machine: the wholeness of the memory chaos. Proceedings of the 13th International Congress on Cybernetics, Namur, 147–151 (1992)

    Google Scholar 

  5. D. M. Dubois: The Fractal Machine. Presses Universitaires de Liège 1992

    Google Scholar 

  6. D. M. Dubois: The hyperincursive fractal machine as a quantum holographic brain. Communication & Cognition-Artificial Intelligence 9-4, 335–372 (1992)

    Google Scholar 

  7. D. M. Dubois (editor): Designing new Intelligent Machines (COMETT European Symposium, Liège April 1992). Communication & Cognition-Artificial Intelligence, 9–4 (1992), sequel 10-1-2 (1993)

    Google Scholar 

  8. D. M. Dubois: Mathematical fundamentals of the fractal theory of artificial intelligence. Invited paper in New Mathematical tools in artificial intelligence. Communication & Cognition — Artificial Intelligence, 8-1, 5–48 (1991)

    Google Scholar 

  9. D. M. Dubois: Fractal Algorithms for holographic Memory of inversible neural Networks. Invited paper in Issues in Connectionism: part II. Communication & Cognition Artificial Intelligence, 8-2, 137–189 (1991)

    Google Scholar 

  10. D. M. Dubois: Self-Organisation of fractal objects in XOR rule-based multilayer Networks. In EC2 (ed.): Neural Networks & their Applications, Neuro-NÎmes 90, Proceedings of the third International Workshop, 555–557 (1990)

    Google Scholar 

  11. D. M. Dubois: Le Labyrinthe de L'intelligence: de l'intelligence naturelle à l'intelligence fractale. Academia (Louvain-la-Neuve) 1990, 321 p., 2ème édition, InterEditions (Paris)/Academia 1990, 331 p, 2ème tirage, 1991

    Google Scholar 

  12. D. M. Dubois: Un modèle fractal des systèmes intelligents. In AFCET France (ed.): Actes du 1er Congrès Européen de Systémique, Tome II, 665–674, 1989

    Google Scholar 

  13. D. M. Dubois, G. Resconi: Hyperincursivity: a new mathematical theory. Presses Universitaires de Liège 1992

    Google Scholar 

  14. D. M. Dubois, G. Resconi: Advanced Research in Incursion Theory applied to Ecology, Physics and Engineering. COMETT European Lecture Notes in Incursion. Edited by A.I.Lg., Association des Ingénieurs de l'Université de Liège, D/1995/3603/01, 1995

    Google Scholar 

  15. D. M. Dubois, G. Resconi: Hyperincursive Fractal Machine beyond the Turing Machine. In Lasker (ed.): Advances in Cognitive Engineering and Knowledge-based Systems. Int. Inst. for Adv. Studies in Syst. Res. and Cybernetics, 212–216 (1994)

    Google Scholar 

  16. D. M. Dubois, G. Resconi: Introduction to hyperincursion with applications to computer science, quantum mechanics and fractal processes. Communication & Cognition — Artificial Intelligence, vol. 10, Nℴ1–2, 109–148 (1993)

    Google Scholar 

  17. D. M. Dubois, G. Resconi: Holistic Control by Incursion of Feedback Systems, Fractal Chaos and Numerical Instabilities. In R. Trappl (ed.): Cybernetics and Systems'94. World Scientific, 71–78 (1994)

    Google Scholar 

  18. A. J. Lotka: Elements of Physical Biology. William and Wilkins, Baltimore 1925

    Google Scholar 

  19. B. Mandelbrot: The Fractal Geometry of Nature. Freeman, San Francisco 1983

    Google Scholar 

  20. R. M. May: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Google Scholar 

  21. R. Pearl: Studies in human biology. William and Wilkins, Baltimore 1924

    Google Scholar 

  22. R. Rosen: Causal Structures in Brains and Machines, Int. J. Gen. Syst. 12, 107–126 (1986)

    Google Scholar 

  23. A. Rosenblueth, N. Wiener, J. Bigelow: Behavior, purpose and teleology. Philosophy of Science, 10, 18–24 (1943)

    Google Scholar 

  24. F. Scheid: Theory and Problems of Numerical Analysis. McGraw-Hill Inc. 1986

    Google Scholar 

  25. F. Varela: Autonomie et connaissance. Seuil 1989

    Google Scholar 

  26. P. F. Verhulst: Nuov. Mem. Acad. Royale, Bruxelles, 18, 1, 1845 & 20, 1, 1847

    Google Scholar 

  27. V. Volterra: LeÇon sur la théorie mathématique de la lutte pour la vie Gauthier-Villars 1931

    Google Scholar 

  28. E. von Glasersfeld: Teleology and the Concepts of Causation. In: G. Van de Vijver (ed.): Sel-organizing and Complex Systems. Philosophica 1990, 46, pp. 17–43

    Google Scholar 

  29. S. Wolfram (ed.): Theory and Application of Cellular Automata. World Scientific, Singapore/Teanek, N. Y. 1986

    Google Scholar 

  30. K. Zuse: The Computing Universe. International Journal of Theoretical Physics 21, 6/7, 589–600 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno Díaz Rudolf Albrecht

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, D.M. (1996). Introduction of the Aristotle's final causation in CAST concept and method of incursion and hyperincursion. In: Pichler, F., Díaz, R.M., Albrecht, R. (eds) Computer Aided Systems Theory — EUROCAST '95. EUROCAST 1995. Lecture Notes in Computer Science, vol 1030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034783

Download citation

  • DOI: https://doi.org/10.1007/BFb0034783

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60748-9

  • Online ISBN: 978-3-540-49358-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics