Skip to main content

A semantic logic for CAST related to Zuse, Deutsch and McCulloch and Pitts computing principles

  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST '95 (EUROCAST 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1030))

Included in the following conference series:

  • 125 Accesses

Abstract

The goal of CAST research and development is to provide modelling tools for formal systems design in the field of information and systems engineering. This paper deals with such modelling tools for formal systems related to Zuse, Deutsch and McCulloch and Pitts computing principles. The semantic logic of such systems can be exhibited in replacing the differential equations by digital cellular automata. K. Zuse proposed such a method for representing physical systems by a computing space. I show that the digital wave equation exhibits waves by digital particles with interference effects. The logical table of the wave equation shows the conservation of the parity related to exclusive OR. The Fractal Machine proposed by the author deals with a cellular automata based on incursion, an inclusive recursion, with exclusive OR. In this machine, the superimposition of states is related to the Deutsch quantum computer. Finally, it is shown that the exclusive OR can be modelled by a fractal non-linear equation and a new method to design digital equations is proposed to create McCulloch and Pitts formal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Delahaye: Les ordinateurs quantiques. Pour la SCIENCE (French edition of Scientific American), 100–104, Mars 1995

    Google Scholar 

  2. D. Deutsch: Quantum Theory, the Church-Turing Principles and the Universal Quantum computer. Proc. R. Soc., London, A 400, 97–117 (1985)

    Google Scholar 

  3. D. M. Dubois: Introduction of the Aristtle's Final Causation in CAST: Concept and Method of Incursion and Hyperincursion. In F. Pichler (ed.): EUROCAST'95. Lecture Notes in Computer Science. Springer-Verlag 1996

    Google Scholar 

  4. D. M. Dubois: Total Incursive Control of Linear, Non-linear and Chaotic systems, in G. Lasker (ed.): Advances in Computer Cybernetics. Int. Inst. for Advanced Studies in Syst. Res. and Cybernetics, vol. II, 167–171 (1995)

    Google Scholar 

  5. D. M. Dubois: Les idées, toujours d'actualité, de l'inventeur du premier ordinateur, le Dr. Ir. K. ZUSE. In: Actes du Colloque International, Histoire de l'Informatique, Sophia Antipolis 13–15 octobre 1993, France: édité par l'Institut de Recherche en Informatique et en Automatique, 20 p. (1993)

    Google Scholar 

  6. D. M. Dubois: Hyperincursivity: inclusive recursivity without time arrow. In: Association Internationale de Cybernétique (éditeur): 13th International Congress on Cybernetics, Namur, 152–156 (1992)

    Google Scholar 

  7. D. M. Dubois: The fractal machine: the wholeness of the memory chaos. In: Association Internationale de Cybernétique (éditeur): 13th International Congress on Cybernetics, Namur, 147–151 (1992)

    Google Scholar 

  8. D. M. Dubois: The Fractal Machine. Presses Universitaires de Liège 1992

    Google Scholar 

  9. D. M. Dubois: The hyperincursive fractal machine as a quantum holographic brain. Communication & Cognition-Artificial Intelligence 9-4, 335–372 (1992)

    Google Scholar 

  10. D. M. Dubois (editor): Designing new Intelligent Machines (COMETT European Symposium, Liège April 1992). Communication & Cognition-Artificial Intelligence, 9-4 (1992), sequel 10-1-2 (1993)

    Google Scholar 

  11. D. M. Dubois: Mathematical fundamentals of the fractal theory of artificial intelligence. Invited paper in New Mathematical tools in artificial intelligence. Communication & Cognition — Artificial Intelligence, 8-1, 5–48 (1991)

    Google Scholar 

  12. D. M. Dubois: Fractal Algorithms for holographic Memory of inversible neural Networks. Invited paper in Issues in Connectionism: part II. Communication & Cognition Artificial Intelligence, 8-2, 137–189 (1991)

    Google Scholar 

  13. D. M. Dubois: Self-Organisation of fractal objects in XOR rule-based multilayer Networks. In EC2 (ed.): Neural Networks & their Applications, Neuro-NÎmes 90, Proceedings of the third International Workshop, 555–557 (1990)

    Google Scholar 

  14. D. M. Dubois: Le Labyrinthe de L'intelligence: de l'intelligence naturelle à l'intelligence fractale. Academia (Louvain-la-Neuve) 1990, 321 p., 2ème édition, InterEditions (Paris)/Academia 1990,331 p., 2ème tirage, 1991

    Google Scholar 

  15. D. M. Dubois: Un modèle fractal des systèmes intelligents. In AFCET France (ed.): Actes du 1er Congrès Européen de Systémique, Tome II, 665–674, 1989

    Google Scholar 

  16. D. M. Dubois, G. Resconi: Hyperincursivity: a new mathematical theory. Presses Universitaires de Liège 1992

    Google Scholar 

  17. D. M. Dubois, G. Resconi: Advanced Research in Incursion Theory applied to Ecology, Physics and Engineering. COMETT European Lecture Notes in Incursion. Edited by A.I.Lg., Association des Ingénieurs de l'Université de Liège, D/1995/3603/01, 1995

    Google Scholar 

  18. D. M. Dubois, G. Resconi: Advanced Research in Non-linear Threshold Logic Applied to Pattern Recognition. COMETT European Lecture Notes in Threshold Logic. Edited by AILg, Association des Ingénieurs sortis de l'Université de Liège, D/1995/3603/02, 1995

    Google Scholar 

  19. D. M. Dubois, G. Resconi: Hyperincursive Fractal Machine beyond the Turing Machine. In Lasker (ed.): Advances in Cognitive Engineering and Knowledge-based Systems. Int. Inst. for Adv. Studies in Syst. Res. and Cybernetics, 212–216 (1994)

    Google Scholar 

  20. D. M. Dubois, G. Resconi: Mathematical Foundation of a Non-linear Threshold Logic: a New Paradigm for the Technology of Neural Machines. ACADEMIE ROYALE DE BELGIQUE, Bulletin de la Classe des Sciences, 6ème série, Tome IV, 1–6, 91–122 (1993)

    Google Scholar 

  21. D. M. Dubois, G. Resconi: Introduction to hyperincursion with applications to computer science, quantum mechanics and fractal processes. Communication & Cognition — Artificial Intelligence, vol. 10, Nℴ1–2, 109–148 (1993)

    Google Scholar 

  22. B. Hasslacher: Beyond the Turing Machine. In R. Herken (ed.): The Universal Turing Machine. A Half-Century Survey. Oxford University Press, Oxford, 1988, pp. 417–431

    Google Scholar 

  23. R. Feynman: Simulating Physics with Computers. International Journal of Theoretical Physics 21, 6–7, 467–488 (1982)

    Google Scholar 

  24. M. Gardner: Mathematical Games on Cellular Automata, Self-reproduction, the Garden of Eden and the Game Life. Scientific American, 112–117, February 1971

    Google Scholar 

  25. H. Levy, F. Lessman: Finite Difference Equations. Pitman, London 1959

    Google Scholar 

  26. S. Lloyd: A Potentially Realizable Quantum Computer. Science 261, pp. 1569–1571 (1993) and 263, p. 695 (1994)

    Google Scholar 

  27. B. Mandelbrot: The Fractal Geometry of Nature. Freeman, San Francisco 1983

    Google Scholar 

  28. P. Marcer, D. M. Dubois: An outline model of cosmological evolution. In: Association Internationale de Cybernétique (éditeur): 13th International Congress on Cybernetics, Namur 1992, pp. 157–160

    Google Scholar 

  29. R. M. May: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Google Scholar 

  30. W. S. McCulloch, W. Pitts. Bulletin of Mathematical Biophysics 5:115–133 (1943)

    Google Scholar 

  31. R. Pearl: Studies in human biology. William and Wilkins, Baltimore 1924

    Google Scholar 

  32. F. Pichler, H. Scwärtzel (Eds.): CAST Methods in Modelling: Computer Aide Systems Theory for the Design of Intelligent Machines. Springer-Verlag 1992

    Google Scholar 

  33. W. Pitts, W. S. McCulloch. Bulletin of Mathematical Biophysics 9:127–147 (1947)

    Google Scholar 

  34. R. Rosen: Causal Structures in Brains and Machines, Int. J. Gen. Syst. 12, 107–126 (1986)

    Google Scholar 

  35. A. Rosenblueth, N. Wiener, J. Bigelow: Behavior, purpose and teleology. Philosophy of Science, 10, 18–24 (1943)

    Google Scholar 

  36. F. Scheid: Theory and Problems of Numerical Analysis. McGraw-Hill Inc. 1986

    Google Scholar 

  37. P. W. P. Shor: Algorithms for Quantum Computation: Discrete Log and Factoring. In: Conference on Foundations of Computer Science, November 1994

    Google Scholar 

  38. F. Varela: Autonomie et connaissance. Seuil 1989

    Google Scholar 

  39. P. F. Verhulst: Nuov. Mem. Acad. Royale, Bruxelles, 18, 1, 1845 & 20, 1, 1847

    Google Scholar 

  40. V. Volterra: LeÇon sur la théorie mathématique de la lutte pour la vie Gauthier-Villars 1931

    Google Scholar 

  41. E. von Glasersfeld: Teleology and the Concepts of Causation. In: G. Van de Vijver (ed.): Sel-organizing and Complex Systems. Philosophica 1990, 46, pp. 17–43

    Google Scholar 

  42. G. Weisbuch: Dynamique des systèmes complexes: une introduction aux réseaux d'automates. InterEditions/Editions du CNRS 1989

    Google Scholar 

  43. S. Wolfram (ed.): Theory and Application of Cellular Automata. World Scientific, Singapore/Teanek, N. Y. 1986

    Google Scholar 

  44. K. Zuse K: Discrete Mathematics and Rechnender Raum (Computing Space)-Part 1-Cellular Structured Space (Rechnender Raum) and Physical Phenomena-Part 2-Konrad-Zuse-Zentrm für Informationstechnik, Berlin, Technical Report TR 94–10, 1994

    Google Scholar 

  45. K. Zuse: The Computer — My Life. Springer-Verlag 1993, 245 p.

    Google Scholar 

  46. K. Zuse: The Computing Universe. International Journal of Theoretical Physics, 21, 6/7, 589–600 (1982)

    Google Scholar 

  47. K. Zuse: Ansätze einer Theorie des Netzautomaten. Nova Acta Leopoldina, Halle, Saale, West Germany 43, 220 (1975)

    Google Scholar 

  48. K. Zuse: Rechnender Raum. Schriften zur Datenverarbeitung, Band 1, Friedrich Vieweg und Sohn, Braunschweig, West Germany 1969, 70 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno Díaz Rudolf Albrecht

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, D.M. (1996). A semantic logic for CAST related to Zuse, Deutsch and McCulloch and Pitts computing principles. In: Pichler, F., Díaz, R.M., Albrecht, R. (eds) Computer Aided Systems Theory — EUROCAST '95. EUROCAST 1995. Lecture Notes in Computer Science, vol 1030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034784

Download citation

  • DOI: https://doi.org/10.1007/BFb0034784

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60748-9

  • Online ISBN: 978-3-540-49358-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics