Abstract
We present a software implementation of arithmetic operations in a finite field GF(2n), based on an alternative representation of the field elements. An important application is in elliptic curve crypto-systems. Whereas previously reported implementations of elliptic curve cryptosystems use a standard basis or an optimal normal basis to perform field operations, we represent the field elements as polynomials with coefficients in the smaller field GF(216). Calculations in this smaller field are carried out using pre-calculated lookup tables. This results in rather simple routines matching the structure of computer memory very well. The use of an irreducible trinomial as the field polynomial, as was proposed at Crypto'95 by R. Schroeppel et al., can be extended to this representation. In our implementation, the resulting routines are slightly faster than standard basis routines.
sponsored by the National Fund for Scientific Research (Belgium).
Preview
Unable to display preview. Download preview PDF.
References
G.B. Agnew, R.C. Mullin and S.A. Vanstone, “An implementation of elliptic curve cryptosystems over F 2155,” IEEE Journal on Selected Areas in Communications, Vol. 11, no. 5 (June 1993), pp. 804–813.
H. Brunner, A. Curiger and M. Hofstetter, “On computing multiplicative inverses in GF(2n),” IEEE Transactions on Computers, Vol. 42, no. 8 (1993), pp. 1010–1015.
E. De Win and P. De Gersem, Studie en implementatie van arithmetische bewerkingen in GF(2n), Master Thesis K.U.Leuven, 1995. (in Dutch)
G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with very small key lengths,” Advances in Cryptology, Proc. Eurocrypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 163–173.
N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, Vol. 48, no. 177 (1987), pp. 203–209.
R. Lercier and F. Morain, “Counting the number of points on elliptic curves over finite fields: strategies and performances,” Advances in Cryptology, Proc. Eurocrypt'95, LNCS 921, L.C. Guillou and J.J. Quisquater, Eds., Springer-Verlag, 1995, pp. 79–94.
R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, Mass., 1983.
A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers, 1993.
V.S.Miller, “Use of elliptic curves in cryptography,” Advances in Cryptology, Proc. Crypto'85, LNCS 218, H.C.Williams, Ed., Springer-Verlag, 1985, pp. 417–426.
R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal bases in GF(pn),” Discrete Applied Mathematics, Vol. 22 (1988/89), pp. 149–161.
A. Menezes and S. Vanstone, “Standard for RSA, Diffie-Hellman and related public key cryptography,” Working draft of IEEE P1363 Standard, Elliptic Curve Systems, February 15, 1996.
S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms over GF(p) and its cryptographic significance,” IEEE Transactions on Information Theory, Vol. 24 (1978), pp. 106–110.
R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p,” Mathematics of Computation, Vol. 44 (1985), pp. 483–494.
R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, “Fast key exchange with elliptic curve systems,” Advances in Cryptology, Proc. Crypto'95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 43–56.
S. Vandenberghe, Snelle basisbewerkingen voor publieke sleutelsystemen gebaseerd op elliptische curven over GF(2n), Master Thesis K.U.Leuven, 1996. (in Dutch)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag
About this paper
Cite this paper
De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vandewalle, J. (1996). A fast software implementation for arithmetic operations in GF(2n). In: Kim, K., Matsumoto, T. (eds) Advances in Cryptology — ASIACRYPT '96. ASIACRYPT 1996. Lecture Notes in Computer Science, vol 1163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034836
Download citation
DOI: https://doi.org/10.1007/BFb0034836
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61872-0
Online ISBN: 978-3-540-70707-3
eBook Packages: Springer Book Archive