Abstract
We present data concerning the factorization of the 130-digit number RSA130 which we factored on April 10, 1996, using the Number Field Sieve factoring method. This factorization beats the 129-digit record that was set on April 2, 1994, by the Quadratic Sieve method. The amount of computer time spent on our new record factorization is only a fraction of what was spent on the previous record. We also discuss a World Wide Web interface to our sieving program that we have developed to facilitate contributing to the sieving stage of future large scale factoring efforts. These developments have a serious impact on the security of RSA public key cryptosystems with small moduli. We present a conservative extrapolation to estimate the difficulty of factoring 512-bit numbers.
Preview
Unable to display preview. Download preview PDF.
References
D. Atkins, M. Graff, A.K. Lenstra, and P.C. Leyland, THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE, Advances in Cryptology, Asiacrypt'94, Lecture Notes in Comput. Sci. 917 (1995), 265–277.
D. J. Bernstein, A. K. Lenstra, A general number field sieve implementation, 103–126 in: [12].
J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field sieve, Advances in Cryptology, Crypto '93, Lecture Notes in Comput. Sci. 773 (1994) 159–165.
T. Denny, B. Dodson, A. K. Lenstra, M. S. Manasse, On the factorization of RSA-120, Advances in Cryptology, Crypto '93, Lecture Notes in Comput. Sci. 773 (1994) 166–174.
B. Dixon, A. K. Lenstra, Factoring integers using SIMD sieves, Advances in Cryptology, Eurocrypt '93, Lecture Notes in Comput. Sci. 765 (1994) 28–39.
B. Dodson, A. K. Lenstra, NFS with four large primes: an explosive experiment, Advances in Cryptology, Crypto '95, Lecture Notes in Comput. Sci. 963 (1995) 372–385.
R. M. Elkenbracht-Huizing, An implementation of the number field sieve, Technical Report NM-R9511, Centrum voor Wiskunde en Informatica, Amsterdam, 1995; to appear in Experimental Mathematics.
R. M. Elkenbracht-Huizing, A multiple polynomial general number field sieve, Proceedings ANTS II, to appear.
M. Gardner, Mathematical games, A new kind of cipher that would take millions of years to break, Scientific American, August 1977, 120–124.
R. Golliver, A. K. Lenstra, K. McCurley, Lattice sieving and trial division, ANTS '94, Lecture Notes in Comput. Sci. 877 (1994) 18–27.
A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Chapter 12 in: J. van Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algorithms and complexity, Elsevier, Amsterdam, 1990.
A. K. Lenstra, H. W. Lenstra, Jr. (eds), The development of the number field sieve, Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993.
A. K. Lenstra, M. S. Manasse, Factoring by electronic mail, Advances in Cryptology, Eurocrypt '89, Lecture Notes in Comput. Sci. 434 (1990) 355–371.
A. K. Lenstra, M. S. Manasse, Factoring with two large primes, Advances in Cryptology, Eurocrypt '90, Lecture Notes in Comput. Sci. 473 (1991) 72–82; Math. Comp., 63 (1994) 785–798.
P. L. Montgomery, Square roots of products of algebraic numbers, Proceedings of Symposia in Applied Mathematics, Mathematics of Computation 1943–1993, Vancouver, 1993, Walter Gautschi, ed.
P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2), Advances in Cryptology, Eurocrypt'95, Lecture Notes in Comput. Sci. 921 (1995) 106–120.
J. M. Pollard, The lattice sieve, 43–49 in: [12].
RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available by sending electronic mail to challenge-rsa-list@rsa.com.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag
About this paper
Cite this paper
Cowie, J., Dodson, B., Elkenbracht-Huizing, R.M., Lenstra, A.K., Montgomery, P.L., Zayer, J. (1996). A World Wide Number Field Sieve factoring record: On to 512 bits. In: Kim, K., Matsumoto, T. (eds) Advances in Cryptology — ASIACRYPT '96. ASIACRYPT 1996. Lecture Notes in Computer Science, vol 1163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034863
Download citation
DOI: https://doi.org/10.1007/BFb0034863
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61872-0
Online ISBN: 978-3-540-70707-3
eBook Packages: Springer Book Archive