Skip to main content

Symbolic modelling and experimental determination of physical parameters for complex elastic manipulators

  • Chapter 6 Modeling And Design
  • Conference paper
  • First Online:
Experimental Robotics IV

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 223))

  • 1021 Accesses

Abstract

After the introduction of a complete and compact multibody system (MBS) formalism for systems with discrete and distributed masses and elasticities, a specialization to tree-structured systems will be presented. A novel approach to the symbolic implementation of these formulas in MAPLE using non-commutative operators facilitates the introduction of symbolic simplifications.

The description of a model for a six-axis robot with elasticities in the gears, bearings and links is followed by the identification of this system. Static deflection measurements are used for the determination of the nonlinear (NL) gear stiffnesses. Frequency response measurements in several positions are employed for the calculation of the dynamic parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behi, F., and Tesar, D.: Parametric Identification for Industrial Manipulators using Experimental Modal Analysis, IEEE Transactions on Robotics and Automation, Vol. 7, No. 5, October 1991, pp. 642–652, 1991.

    Article  Google Scholar 

  2. Capolsini, P.: The Use of MAPLE for Multibody Systems Modeling and Simulation, Mathematical Computation with Maple V: Ideas and Applications, Tom Lee (ed.), Birkhäuser Boston, pp. 109–117, 1993.

    Google Scholar 

  3. Cetinkunt, S., and Book, W. J.: Symbolic Modelling and Dynamic Simulation of Robotic Manipulators with Compliant Links and Joints, Robotics & Computer-Integrated Manufacturing, vol. 5, no. 4, pp. 301–310, 1989.

    Google Scholar 

  4. Char, B. W., Geddes, K. O. et al: MAPLE, Reference Manual, Fifth Edition, University of Waterloo, Canada.

    Google Scholar 

  5. Henrichfreise, H.: Aktive Schwingungsdämpfung an einem elastischen Knickarmroboter, Fortschritte der Robotik 1, Vieweg Verlag, Braunschweig/Wiesbaden 1989.

    Google Scholar 

  6. Hollerbach, J. M.: A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, no. 11, pp. 730–736, Nov. 1980.

    Google Scholar 

  7. Kalender, Th.: Statistische Modellierung von Präzisionsgetrieben in elektromechanischen Antrieben, Fortschritt-Berichte, Reihe 1, Nr. 236, VDI Verlag, Düsseldorf, 1994.

    Google Scholar 

  8. Kircanski N., Goldenberg, A. A., and Jia, S.: An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors, Preprints of the ISER '93, Kyoto, Japan, Oct. 28–30, pp. 147–154, 1993.

    Google Scholar 

  9. Leu, M. C., and Hemati, N.: Automated Symbolic Derivation of Dynamic Equations of Motion for Robotic Manipulators, Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 108, pp. 172–179, Sept. 1986.

    Google Scholar 

  10. Meirovitch, L.: Analytical Methods in Vibrations, Mcmillan Publishing Co., Inc., New York 1967.

    Google Scholar 

  11. Moritz, W., Neumann, R., and Schütte, H.: Control of Elastic Robots Using Mechatronic Tools, Harmonic Drive International Symposium, Hotaka, Nagano, Japan, May 23–24, 1991.

    Google Scholar 

  12. Nethery, John F., and Spong, Mark W.: Robotica: A Mathematica Package for Robot Analysis, IEEE Robotics & Automation Magazine, pp. 13–20, March 1994.

    Google Scholar 

  13. Schiehlen, W.: Technische Dynamik, Teubner Verlag, Stuttgart 1986.

    Google Scholar 

  14. Schütte, H., Moritz, W., Neumann, R., Wittler, G.: Practical Realization of Mechatronics in Robotics. Preprints of the ISER'93, Kyoto, Japan, Oct. 28–30, pp. 138–146, 1993.

    Google Scholar 

  15. Seeger, G., Leonhard, W.: Estimation of rigid body models for a six-axis manipulator with geared electric drives, Proc. IEEE Int. Conf. Robotics Automation, Scottsdale, AZ, May 1989.

    Google Scholar 

  16. Spong, M. W., and Vidyasagar, M.: Robot Dynamics and Control, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1989.

    Google Scholar 

  17. Truckenbrodt, A.: Bewegungsverhalten und Regelung hybrider Mehrkörpersysteme mit Anwendung auf Industrieroboter, Fortschritt-Berichte, Reihe 8, Nr. 33, VDI Verlag, Düsseldorf 1980.

    Google Scholar 

  18. Türk, S.: Zur Modellierung der Dynamik von Robotern mit rotatorischen Gelenken, Fortschritt-Berichte, Reihe 8, Nr. 211, VDI Verlag, Düsseldorf, 1990.

    Google Scholar 

  19. Wolz, U., and Wittenburg, J.: MESA-VERDE: A Program for the Symbolic Generation of Equations for Multibody Systems, Z. angew. Math. Mech., ZAMM 66 (5), T399–T400, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib J. Kenneth Salisbury

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Schütte, H., Moritz, W. (1997). Symbolic modelling and experimental determination of physical parameters for complex elastic manipulators. In: Khatib, O., Salisbury, J.K. (eds) Experimental Robotics IV. Lecture Notes in Control and Information Sciences, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035219

Download citation

  • DOI: https://doi.org/10.1007/BFb0035219

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76133-4

  • Online ISBN: 978-3-540-40942-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics