
Graphs in METAFrame:
The Unifying Power of Polymorphism

M. yon der Beeck, V. Braun, A. Clat~en, A. Dannecker, C. Friedrich,
D. Koschfitzki, T. Margaria, F. Schreiber, B. Steffen

Lehrstuhl fiir Programmiersysteme
Universit~t Passau

D-94030 Passau (Germany)
steffen~fmi, uni-passau, de

Abstract . We present a highly polymorphic tool for the construction,
synthesis, structuring, manipulation, investigation, and (symbolic) exe-
cution of graphs. The flexibility of this tool, which mainly arises as a con-
sequence of combining complex graph labelings expressing the intended
semantics with hierarchy and customized graphical node representations,
is illustrated along a representative choice of application scenarios.

1 I n t r o d u c t i o n

Graphs are theoretically well-studied and widely used in practice to model e.g.
dependence, hierarchy and computation. Particularly powerful are semantics-
based versions of labelled graphs, 1 which adequately represent structures like flow
graphs, transition systems, automata, partial orders, and Petri nets. Therefore
a number of tools like AUTOGRAPH [15], the Concurrency Factory [2], SDT [18]
and PEP [6] has been developed supporting these structures. However, except
for a few cases, where a small set of similar structures is supported, they are
limited to exactly one structure. In particular, as far as we know, the support of
a (new) structure is always achieved by a specific coding, and not, as proposed
below, via library instantiation within a generic scheme.

In this paper we present the graph component of METAFrame 2, which was
developed as polymorphically as possible in order to cover a wide range of appli-
cations. Our approach, which combines complex labeling, e.g. for expressing se-
mantic properties, with hierarchy and customized graphical node representation,
turned out to be flexible enough to capture application areas like flow graph-
based dataflow analysis [11], hierarchical specifications in SDL [17], library-based
organization of software reuse [22], process modelling [27], and simulation and
verification of distributed systems [28]. Particularly interesting is an industrial

1 Label may be as simple as action names used in an automata representation or as
complex as execution codes for large tools and procedures.

2 METAFrame is a metaAevel environment for the construction, analysis and verification
of systems [26].

113

application which was carried out under severe real-Lime constraints: an environ-
ment for the development of Intelligent Network Services had to be completed
and turned into an industrial product within 10 months (cf. Section 2). It was
the described flexibility of MEWAFrame which allowed us to meet this deadline.

The advantage of our approach lies in its high degree of sharing. All the
features based on our graph component, like 1) symbolic execution or prototype
animation, 2) hypertext-based browsing fQr navigation aid and user's manual, 3)
hierarchical structuring and macros, 4) formal verification via model checking,
5) abstraction and diagnostic features, 6) automatic synthesis, and 7) automatic
layout can be used in all MEwAFrarne applications (Fig.l).

Representation

Operations

Fig. 1. Graphs, Syntax and Semantic in METAFrame

The power of our graphical component is centered around the concept of
complex, semantic labelling discussed in Sect. 4. There we illustrate its power
and flexibility along concrete examples taken from the previously mentioned ap-
plication domains. To this aim, we first briefly introduce some of METAFrame's
applications in the Sect. 2 and 3. In particular, the next section is entirely de-
voted to IN-METAFrarne, our currently most comprehensive application, with
the aim of showing how the different features mentioned above and depicted in
Fig. 1 interplay and complement each other, and how METAFrame's graphical
component plays a central supporting role.

The graphs shown in this paper are produced using the ffgraph library [5],
developed within the MEwAFrame project, which uses the Tcl/Tk library [14].
They are automatically layouted with a specially tuned version of the algorithm
proposed by Sugiyama et al. [29].

-~]4

2 A C o m p l e x A p p l i c a t i o n : D e f i n i t i o n o f I n t e l l i g e n t
N e t w o r k S e r v i c e s in IN-METAFrame

Intelligent Network Services are customized telephone services, like e.g., 1) 'Free-
Phone', where the receiver of the call can be billed if some conditions are met,
2) 'Virtual Private Network', enabling groups of customers to define their own
private nets within the public net, or 3) 'Info Lines', where a number of menus
leads a caller to the most convenient connection for information and services [23].

In the following paragraphs we illustrate METAFrame's principal features
(prototype animation, hypertext-based browsing, macros, formal verification,
and diagnostic features) along a simple IN service in order to show how they are
used in the context of industrial design practice.

The service shown in Fig. 4 is simple kind of Free-Phone (800-service), called
'Granny's Free-Phone' (Fig. 4). It is designed for people who would like to en-
courage friends and relatives to call them by paying their calls if they are done
at a convenient time of the day.

2.1 Abstract Model l ing

The service graph represents a high-level model of the actual service: nodes
represent in fact Service Independent Building Blocks (SIBs), which are specific
procedures for IN applications, and edges the conditional flow of control. The
node/edge behaviours themselves come in several levels of abstraction, e.g., sym-
bolic execution codes (Fig. 3) (c) or the actual C code, which will eventually run
on the network machinery. All this information, which actually constitutes the
label information of this modelling, is available to IN service designers via the
SIB library (Section 2.3).

2.2 Prototype Animation: Simulation of the Service

To get a better feeling for the behaviour of a service, or to control its reliabil-
ity at the design level, designers usually employ animation/symbolic execution
(also called red-line tracing). The symbolic run shown in Fig. 2 concentrates on
a specific aspect of the runtime behaviour, namely user interaction: after a call
initialization section, the subscriber specific Free-Phone number is traversed be-
fore the caller is prompted to enter a Personal Identification Number (PIN) and,
depending on the time of the day, the call is either released (in the forbidden
time windows) after an announcement, or it is routed to the desired destination
number.

2.3 On-line Documentat ion:
Hypertext Navigation Aid and User's Manual

An on-line documentation via hypertext offers at any stage of the service defini-
tion comfortable information about central aspects of this application (including,

115

~3
v

Fig. 2. Symbolic Execution via Red-Line Tracing

~P

o o o o 0

(b
)

(d
)

117

! ~ 7 it~ omaErrorl -"

W cm~text
~ t

W fcil

~:,~e pin macro

/ I

~ cresWffci2

....................... ~ . ~ | |~..-...;.,
~r

~ . l e . e M ~ . ~ a t i ~

Fig. 4. The Granny's Free-Phone service.

e.g., SIBs, services, and constraints), but also about the METAFrame system, like
information about the windows, menu entries (help), and the hypertext system
itself. The hypertext system presents a hypercard like the one of Fig. 3 (c) for
each SIB, whose many fields cover a variety of documentation aspects and are
displayed in a user-specific customized way, depending e.g. on access permissions.
All these fields may contain hyperlinks which allow users to browse through the
hypertext system using it as an online User's Manual. Navigation functions (step
back, consult the history of visited cards as in Fig. 3 (d), step forward in the

118

history), as well as other editing functions (open a new card, edit or delete the
current card) are easily accessed by means of the corresponding menu entries.
It is also possible to step from a single card to the taxonomy of SIBs, which
provides a fine-grained classification of all available SIBs according to diverse
criteria (Fig. 3 (a)). The hypertext browser helps navigating along the taxon-
omy too, showing ancestors, siblings, or as in Fig. 3 (b) descendants from any
selected node. 3

2.4 Structuring: Hierarchical Service Definition

Hierarchical design of IN services is technically realized in form of a powerful
macro mechanism which allows developers to define whole subservices as prim-
itive entities. As macros have formally the same interfaces as single SIBs, this
supports the reuse of already designed (sub-) services. The macro concept of IN-
METAFrame goes hand in hand with its formal verification and abstract views
features [24].

Macros may be nested, allowing the definition of truly hierarchical structures,
and they can be folded and unfolded in any graph in order to support abstrac-
tion from and focussed investigation of details. Fig. 4 shows an unfolded nested
macro within a service graph: the frames indicate the levels of the macros, the
omaErrorl 4 macro containing itself a pin_macro.

2.5 F o r m a l Verification in the Presence of Hierarchy

In order to guarantee successful execution of the designed services in the con-
text of the complex, distributed IN architecture, certain frame conditions (con-
straints) must be met. To this aim we use IN-MnTAFrame's automatic verification
wrt. formal specifications. While local correctness checks, guaranteeing e.g. the
correct parameterization of single SIBs, are quite straightforward to implement,
and are present also in other Service Definition environments, our environment
is unique in offering automatic check of global correctness and consistency con-
ditions of the service prototype, concerning the interplay between the SIBs of a
service. This can be verified at any time in a push-button fashion [24], by means
of the model checker for the modal mu-calculus described in [21].

In case of hierarchical structures, verification is always done relative to the
fully unfolded or decapsulated 5 graph (see [1]). This design decision is consistent
with the principle that macros are an (auxiliary) means to structure complex
services, but do not have any semantic impact.

a Details about the hypertext system can be found under
http ://brahms. fmi. uni-passau, de/ dannecke/hypert ext/hypert ext -mail. html.

4 This name indicates a design error within the macro, which will be discovered using
formal verification in the next paragraph.

s Decapsulation zooms into the macro structure. Nested structures are decapsulated
level-wise.

119

W ~ a E r r o r l

~de.t inat i~ ~releas.

(b)

iCheckedwhether in each call
iphase every call charg~ ha~ a
ivalid bill, i.e. there exists
a 'billing' before a
'call-line-charging' is
reached.

(c)

(a) |

W iBit@

I

?

W fci2

n t e x v ~ 1 5

(e) (d)

Fig. 5. The Model Checker Finds a Billing Error

120

Model checking the hierarchical version of Granny's Free-Phone service shown
in Fig. 5 (a) results in the discovery of erroneous paths in the graph, which violate
the constraint shown in the same figure in the top right window (c): On each
segment (phase) of the call, a bill should be issued before the system can charge
for the segment. The problematic part of the paths starts at the prompt node
marked by the arrow (e), whose icon is framed in red on the screen.

2.6 Property-Oriented Abstraction and Views:
Application to Error Diagnosis and Correction

A major application of property-oriented abstraction is the generation of error
views, which are defined relative to the fully unfolded graph. They hide all aspects
of the considered (service) graph that are unimportant for the location of the
error, as shown in Fig. 5 (e) for the error detected by the model checker in the
previous paragraph.

Error views are generated automatically whenever a model checking attempt
fails. Although this error view looks identical to the one obtained when model
checking the fully expanded version of the service shown in Fig. 4, there is an
essential difference. This becomes apparent when applying e.g. the decapsulate
source command, which is a view-specific operation that supports error correc-
tion, to the left edge into the zone SIB. This results in the graph shown in Fig. 5
(d): the extracted source node is the macro pin_macro, showing that the macro
structure is preserved as far as possible also in error views, which allows hier-
archical error correction. Details about error views and error correction can b e
found in [24].

3 F u r t h e r A p p l i c a t i o n s

In this section we sketch a number of further application scenarios, where all the
features discussed in the previous section are also available, even though not all
of them are always adequate.

3.1 Heterogeneous Visualization for the MOSEL Toolset

MOSEL [12] is a new toolset for the analysis and verification of Monadic Sec-
ond order Logic designed as a system-level environment supporting automated
reasoning in this logic. In its complete realization it will include a flexible set
of decision procedures for several theories of the logic (e.g., finite and infinite
strings, and trees) complemented by a variety of support components to pro-
vide input format translations, visualization, and interfaces to other logics and
analysis, verification, and synthesis tools.

The bidirectional link of MOSEL'S automata to METAFrame's ffgraphs li-
brary [5] allows us to read and generate automata which can be not only dis-
played, but also may stem from or be fed into other algorithms and tools of

121

Fig. 6. Automata for Atomic Formulas

the METAFrame environment. This way graphs are not a pure visualization com-
modity, but an alternative impor t /expor t mechanism, crucial for the cooperation
between heterogeneous tools. An important consequence is that MOSEL can be
usedas a model checker too, to check imported automata wrt. properties in the
logic. 6

Powerful graph manipulation features available in METAFrame like the window-
in-window browser shown in Fig. 6 (used in the IN context to show macro ex-
pansion within a hierarchical service graph) are useful also when dealing with
automata. Here, by clicking on an edge of the automaton, the representation of
its label as BDD is locally shown in a separate, virtual, window which can be
moved, edited, and steered through the menu bars and commands of the outer
window. The graphical display of the automata is implemented as a method of
the MOSEL automata class, and relies on the label mechanism of the ffgraphs,
which allow in particular entire windows to be part of complex labels.

As a comparison, Fig. 5 in [12] shows a similar display in its daVinci real-
ization: there we have to resort to two distinct windows, disjointly represent-
ing information at two different abstraction levels (an automaton, whose edges
are labelled by formulas, and a:mult i-root BDD with a root for each of the
formulas). Unfortunately, daVinci does not show which of the root nodes corre-
sponds to which formula, and the BDD root labels must be added manually to

6 This was e.g. not possible for the Mona tool [9], due to its I/O format restrictions.

~22

the automata edges outside daVinci. In contrast, working at the semantic level,
METhFrame keeps the correspondence between representations at the different
abstraction levels, and displays it either directly, by locally opening a view to a
different abstraction level in a virtual window as shown in Fig. 6, or disjointly,
by opening an autonomous window. In both cases the labels are automatically
displayed appropriately.

3.2 A u t o m a t i c S y n t h e s i s of Des ign P l a n s in CAD-METAFrame

~ i l ba~t 11

iff ", "- dis "" " .

1 Ni!l!~!~iiiiiii~iiiii~ Ni~!Niiiiiiiiiiiiiiiiiiiiiiiiit
!I1 iiiiiiiiiiiiiiii:~::%~i~tN~ u~:*%ii~iiiii~ ~ iii;i;iiiiiiiiiliiiiiiiiiiiiiii:,)

. : i i i i i i i i i i i~ i !~ i i~ i i i~ i ieNi l i i i i i i i i i i i i i i i i i i
... ~-!iililiiilllll!lll!il!ll~iii:.~iiiiiiii!iiiiiiiiil ..

iiiiiiiliilIIIIIilINNIIIIIil ~Iiii!]iiiiiiiilii~l!l!ll!!illiii!ii!il

Fig. 7. Synthesis Result and Corresponding Constraints

The CAD-METAFrame [28] application is an environment supporting the flex-
ible integration of CAD tools for VLSI and advanced workflow organization
through the application-specific construction of design plans, which avoids the
insurgence of unsuccessful design plans at design time. CAD-METAFrame can

123

be regarded as a global planner where logic specifications are used to direct the
automatic construction of design plans according to global properties guarantee-
ing executability, tool compatibility, and other consistency conditions. During a
planning phase a graph representing all complete, executable workplans is auto-
matically synthesized on the basis of simple constraint-like specifications and a
library of available tools (Fig. 7).

Proposed solutions can be investigated by means of the hypertext browser,
which provides information about single tools and modules as well as about
the type and module classification schemes (taxonomies) used for specification.
Since each path in the graph corresponds to a target program, solutions are
directly executable and can be run as soon as the corresponding path is selected.
The user's interaction works exactly as shown in the previous section for the
animation/simulation of IN services: input required during execution can either
be interactively typed in a pop-up window or loaded from a file. Satisfactory
plans can be made persistent through compilation into a new module that can
be saved in the repository for later reuse.

Fig. 7 shows one of the possible visualizations of specification refinement: here
we have strengthened the requirements of a query, and the new result is displayed
as projection wrt. the previous solution space. In particular, the complete graph
displays the solution space to the first query, whose dark portion still satisfies
the stronger query. The grey portion is no longer valid.

3.3 Executable Hierarchical Specifications in SDL

SDL (Specification and Description Language) is a graphical specification lan-
guage widely used in telecommunication applications. Standardized by ITU (In-
ternational Telecommunication Union) in 1988 [17], it is designed to provide a
visual language for the definition of protocols, or communication in distributed
systems. Fig. 8 shows our hierarchical METAFrame representation of the Daemon
Game (see [31], Chapt. 5). The upper window in the figure shows that the Game
block consists of two process types, Monitor and Game. The lower window shows
how the Game process type is actually refined by a finite state machine by local
expansion of the icon into a whole (inner) window. Once this window is selected,
its layout can be steered by means of the scroll bars and of the menus of the outer
window. This possibility of local node/edge expansion within the same window
is new in this application area: even state-of-the art commercial SDL tools like
SDT3.0 [18] show each refinement in separate windows. Our tool supports also
this way of expansion, but in our experience nested window expansions are often
easier to comprehend.

3.4 Dataf low Analysis

The DFA&OPT-METAFrame toolkit of [11] supports compiler construction by
automatically generating efficient datafiow analysis algorithms from concise spec-
ifications given in a modal logic. A high level programming language allows to

124

Fig. 8. Snapshots of the Daemon Game Specification in SDL

combine the results of different analyses into optimizing program transforma-
tions. It serves as the connecting link for combining program analysis and opti-
mization, such that the toolkit supports the complete process of the optimizer
construction.

The screen shot of Fig. 9 illustrates the use of the toolkit: the results of
the DFA-algorithms, which are automatically generated from the specifications
shown in the middle left window, are displayed in the right window, which shows
the argument program in an automatically generated and layouted transition
system-like representation. The states represent program points, and the tran-

125

Interpreter version 1.0.I Mar 6 1995

Loading ./lib/interpreter/hll/mtart_up.hll
Loading ,]lib/interpreter/hll/,./,./sni/hll/snil.hl:
-> load('./lib/dfa/hll/BCMToolKit.hll');
Loading ,/lib/dfa/hll/BC~EoolKiBC~s
-> load('./lib/dfa/hll/DFAToolKit.hll')J
Loading ./lih/dfa/hll/DFAToolKit.hll
-> BCMToolKit()~

Busy Code Motion for Intraprocedural
Non-Parallel Programs

DS I = "Wd F (- (' M o d ' , r h s , "] ' 8 n d) , ' U o e ' , r h s , ") "

US i= 'W~_B(-(Mod_', rhs, "] 'Start),
'Use_', rh~, ' & -'Nod_', rhu, ')"

he DS-States are colored red.
he US-Statem are colored blue.
he US-States and DS-States are colored ~genta.

Fig. 9. Dataflow Analysis Scenario

sitions the control flow and the basic blocks of the underlying procedure. Nodes
enjoying the property checked by the dataflow analysis are highlighted.

The commands which control the analysis and optimization process are exe-
cuted by an interpreter running in the upper left window.

4 E x e c u t a b l e ~ P o l y m o r p h i c L a b e l s

Spanning this variety of application fields, keeping for each its characteristic
look and feel is not only a matter of loading the correct set of icons to represent
nodes and edges, but it involves dealing with the heterogeneous semantics of
each application in an adequate and fexible way. This means, the interpretation
of the graphical objects is application dependent, and, even subtler, it depends
on the abstraction level of the model represented as graph as well as on the
particular mode in which a METAFrame application is running.

Being linked to the (operational) meaning of nodes and edges, this means that
the labels are the decoupling concept between look and feel, between represen-
tation and execution of a model. In the remainder of this section, we re-examine
the presented application examples under this point of view.

1. Appl ica t ion Dependency : Although the representation of workflows in
the CAD design environment looks like an automaton (cf. Fig. 7 and 6),

126

the execution of each node and transition corresponds to the activation of
a complex tool and to the generation of large amount of data stored in one
or more files, which is different from just simulating a path in a finite state
machine. In the IN application we have an even more complex execution,
since each node corresponds to a procedure capsulating a series of operations
in a highly distributed system, and each branching condition may involve
consulting remote databases in real-time (e.g., to check whether a credit
card number is currently valid or blocked).

2. A b s t r a c t i o n Leve l D e p e n d e n c y : Dealing with node/edge refinement, the
meaning of a graphical object can vary from one abstraction level to the
other. In Fig. 6 we see that at the upper level the automata generated by
MOSEL are labelled with a boolean expression, while clicking on any edge
reveals in a separate window its canonical representation as a Binary Decision
Diagram, as internally stored by MOSEL. Similar observations hold for the
t reatment of hierarchy in the SDL application: while at the system level an
edge represents an asynchronous communication channel, at the block level
in Fig. 8 the same edge representation means synchronous communication
and at the process level (concerning finite automata modelling) an edge
represents a single transition from a source to a target state.

3. A p p l i c a t i o n M o d e : The meaning of execution on an object may be bound
also to configuration parameters, which allow the definition of running modes
inside an application of METAFrame. We already saw in Fig. 2 that in the
prototyping and demo modes an IN service can be run through red-line
tracing, an animation facility based on attaching pseudo-code to each SIB
and branch. This way, a service operator or a designer can effectively validate
and demonstrate selected aspects (here, the user interaction) of the service
under definition without having to actually deploy it in the net. Changing the
running mode amounts to associating a different execution code to (some or
all) objects, which can be done easily at any time. If the actual running code
is available and activated, METAFrame can turn into a complete simulation
and testing environment.

5 R e l a t e d W o r k

The decision to design our graph component completely anew instead of using
one of the available tools was due to our requirement for a flexible t reatment
of semantic graphs: rather than being interested in graphs and graph properties
as such, we wanted to provide a maximum support for the integration of new
application scenarios in our graph-based modelling environment. Even now, three
years later, there is no other tool satisfying our needs: most available graph- or
graphics-based tools and components offer either a purely algorithmic or purely
graphical support, and the most similar tool, PEP, which provides a quite liberal
semantic graph scenario, is not designed for flexible modification and extension.

Well known in the algorithmic category is the (now also commercially avail-
able) LEDA [13] object-oriented graph library. It offers a collection of highly

127

efficient primitives and algorithms to be used as components in a graphic en-
vironment, but contains hardly any visualization support, and no support for
binding data or functionality to the graphs.

On the graphical/visualization side, generic tools like daVinei [3], GraphEd[10]
or AT&T's commercial GraphViz [8] do not support application-oriented func-
tionality, and DG [4], Lens and GROOVE [19], VCG [16], as well as the commer-
cial Graph Layout Toolkit and Network Layout Assistant by Tom Sawyer Software
focus on a specific application area, like display of dataflow graphs, visual sup-
port for constructing object-oriented programs or computer networks, without
any explicit intent for extension. - Interestingly, even restricted to the purely
graphical aspect, a comparison [20] of the VCG, EDGE, GraphViz, daVinci, if-
graphs, Graphlet 7 tools and libraries, favoured ffgraphs. It was only the better
and guaranteed support of a commercial tool, which eventually led the authors
to choose GraphViz for their purposes.

Closer in their intent to our aims are AUTOGRAPH [15], VTView 8 [30], and the
PEP system [6], which support the semantic treatment of concurrent systems,
but nevertheless fail the desired flexibility and heterogeneity. Providing editors,
compilers, simulators, specific algorithms for checking a given set of abstract
properties, and model checkers wrt. elementary temporal logic, for a number of
Petri Net-based languages, the PEP system, which essentially arose in parallel
with METAFrame, comes closest to our desires. However, even there the admit-
tedly quite general scenario is 'hardwired', and there is no explicit support for
extensions. In fact, whereas modifying the scope of the PEP system requires the
modification of the underlying program, the same can be achieved dynamically
in METAFrame simply by means of a library modification. Thus PEP may be
seen as a very powerful possible instance of METAFrame, but not vice versa.

6 C o n c l u s i o n

We have presented a highly polymorphic tool for the construction, synthesis,
structuring, manipulation, investigation, and (symbolic) execution of graphs.
The flexibility of this tool, which mainly arises as a consequence of combining
complex graph labellings expressing the intended semantics with hierarchy and
customized graphical node representations, has been illustrated along a choice
of representative applications. In our experience the Uniformity of our approach
to cover all these different formats is particularly advantageous in large projects,
where several formats appear, as it allows a high degree of sharing, while min-
imizing the required interfaces. We strongly profited from these features in our
Telecommunication application sketched in Section 2.

7 A system based on the LEDA library and GraphEd experience [7].
s VTView is the graphical editor of the Concurrency Factory [2].

128

R e f e r e n c e s

1. M. von der Beeck, B. Steffen, T. Margaria: "A Formal Requirements Engineering
Method and an Environment for Specification, Synthesis, and Verification", Proc.
of SEE '97, 8th IEEE Conference on Software Engineering Environments, Cottbus
(Germany) 8-9 April 1997.

2. R. Cleaveland, P. Lewis, S. Smolka, O. Sokolski: "The Concurrency Factory: A
Development Environment for Concurrent Sysytems," Proc. CAV'96 - Juli-Aug.
1996, New Brunswick, NJ, USA, LNCS 1102, pp.398-401, Springer Verlag.

3. daVinci: the tool is available via ftp at site f t p : / / f t p . u n i - b r e m e n . d e / p u b /
graphics/daVinci

4. Information on DG is available at http://www, cse. ogi. edu : 80/Sparse/dg.html
5. C. Friedrich: "The ffgraph Library~', Techn. Rep. MIP95-20, Univ. of Passau (D),

December 1995, http://www.fmi.uni-passau.de/friedric/ffgraph/main.shtml
6. B. Grahlmann, E. Best: "PEP - More than a Petri Net Toot', Proc. TACAS'96,

Passau (D), March '96, LNCS 1055, pp. 397-401, Springer Verlag (see also
http ://www. informatik, uni-hildesheim, de/ pep/HomePage, html).

7. Information on Grapblet is available at h t tp : / /www.uni-passau.de/Graphle t /
8. Information on GraphViz is available at

http ://www. research, art. com/sw/t ools/graphviz/.
9. J. Henriksen, J. Jensen, M. J~rgensen N. Klarlund, R. Paige, T. Rauhe, A. Sand-

holm: "Mona: Monadic second-order logic in practice," Proc. TACAS'95, /~rhus
(DK), May 1995, LNCS 1019, Springer V., pp. 89-110.

10. Michael Himsolt. GraphEd User Manual. Universit~t Passau, 1990, see also
http ://www. uni-passau, de/ himsolt/GraphEd/

11. M. Klein, J. Knoop, D. Koschfitzki, B. Steffen: "DFASJOPT-METAFrame: A Tool
Kit for Program Analysis and Optimization", Proc. TACAS'96, Passau (D), March
'96, LNCS 1055, pp. 422-426, Springer Verlag.

12. P. Kelb, T. Margaria, M. Mendler~ C. Gsottberger: "MOSEL: A Flexible Toolset
for Monadic Second-Order Logic," Proc. TACAS'97, Univ. of Twente, Enschede
(NL), April 1997, this volume.

13. S. N~iher: "LEDA user manual (version 3.0)," Technical report, Max-Plank-
Institut ffir Informatik, Saarbrficken, 1994,
see also http://www, mpi-sb.mpg, de/LEDA/leda, html

14. John K. Ousterhout: "Tel and the Tk Toolkif', Addison-Wesley, April 1994.
15. V. Roy, R. de Simone: "AUTO and autograph," Proc. CAV'90, New Brunswick NJ

(USA), June 1990, AMS-DIMACS.
16. Georg Sander: "Graph layout through the VCG tool," Technical Report A03/94,

Universit~t des Saarlandes, Saarbrficken, D, October 1994.
17. "Specification and Description Languagd', Recommendation ITU Z.100, ITU,

Geneva.
18. SDT 3.0, SDL Design Tool, Telelogic AB, Malta5 (S),

http ://www. telelogic, se/
19. Information on both Lens and GROOVE are available at the SoftViz site, see

http ://www. cc. gatech, edu/gvu/softviz/SoftViz, html
20. S. Spagnolo, A. Parker, K. Chart, M. Mahemoff: "Graphing Package Re-

port for Group Y~', Dept. of CS, Univ. of Melbourne (AUS), Oct. 1996,
available at ht tp: / /munkora, cs.mu.oz.au/440/html_versions_of_documents/
v• er/v_graphrep/v_graphre p . html

129

21. B. Steffen, A. Claflen, M. Klein, J. Knoop. T. Margaria: "The Fixpoint Analysis
Machind', (invited paper) to CONCUR'95, Pittsburgh (USA), August 1995, LNCS
962, Springer Verlag.

22. B. Steffen, B. Freitag, A. Cla~en, T. Margaria, U. Zukowski: "An Approach to In-
telligent Software Library Managemenf', Proc. 4th Int. Conf. on Database Systems
for Advanced Applications (DASFAA '95), Nat. Univ. of Singapore, April 10-13,
1995.

23. B. Steffen, T. Margaria, V. Braun, M. Reitenspiet3: "An Environment for the Cre-
ation o.f Intelligent Network Services", invited contribution to the book "The Ad-
vanced Intelligent Network: A Comprehensive Report", Int. Engineering Consor-
tium Chicago (USA), Dec. 1995, pp. 287-300. - also reprinted in the Annual Review
of Communications, IEC, 1996.

24. B. Steffen, T. Margaria, V. Braun, A. Claflen, H. Wendler: "Hierarchical Service
Definitioff', Appears in the Annual Review of Communications, IEC - Int. Engi-
neering Consortium, Chicago (USA), 1997.

25. B. Steffen, T. Margaria, A. Claflen, V. Braun: "Incremental Formalization: a Key
to Industrial Success", In "SOFTWARE: Concepts and Tools", Vol.17, N.2, pp.
78-91, Springer Verlag, July 1996.

26. B. Steffen, T. Margaria, A. Cla~en, V. Braun: "The METAFrame '95 Environmenf',
Proc. CAV'96 - Juli-Aug. 1996, New Brunswick, N J, USA, LNCS 1102, pp.450-453,
Springer Verlag.

27. B. Steffen, T. Margaria, M. vonder Beeck: "Automatic Synthesis of Linear Pro-
cess Models from Temporal Constraints: An Incremental Approach, Proc. AAS'97,
ACM/SIGPLAN Int. Workshop on Automated Analysis of Software, Paris (F), 14.
Jan. 1997 (affiliated to POPL'97), pp. 127-141.

28. B. Steffen, T. Margaria, A. Claflen: "Heterogeneous Analysis and Verification
for Distributed Systems", "SOFTWARE: Concepts and Tools", N. 17, pp. 13-25,
March 1996, Springer Verlag.

29. K. Sugiyama, S. Tagawa, M. Toda: "Methods for Visual Understanding of Hierar-
chical System Structures", IEEE Transactions on Systems, Man, & Cybernetics,
Vol.ll, N.2, Feb. 1981, pp.109-125.

30. V. Trehan: "VTView: A graphical editor for hierarchical networks of finite-state
processes," Master's thesis, Dept. of Computer Science, North Carolina State Uni-
versity, Dec. 1992.

31. K. Turner: "Using Formal Description Techniques", J. Wiley, 1993.

