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A b s t r a c t .  We have argued previously that the effectiveness of a verifi- 
cation system derives not only from the power of its individual features 
for expression and deduction, but from the extent to which these capabil- 
ities are integrated: the whole is more than the sum of its parts [19, 21]. 
Here, we illustrate this thesis by describing a simple construct for tabu- 
lax specifications that was recently added to PVS. Because this construct 
integrates with other capabilities of PVS, such as typechecker-generated 
proof obligations, dependent typing, higher-order functions, model check- 
ing, and general theorem proving, it can be used for a surprising variety 
of purposes. We demonstrate this with examples drawn from hardware 
division algorithms and requirements specifications. 

1 I n t r o d u c t i o n  

Persuaded by the advocacy of David Parnas  and others [14], we recently added 
a construct  for tabular  specification to PVS [12]. The construct generates proof 
obligations to ensure tha t  the conditions labeling the rows and columns are dis- 
joint and exclusive. This simple capabili ty has been found useful by colleagues 
at NASA and Lockheed-Martin,  who applied it in requirements analysis for 
Space Shuttle flight software [2,17]. The capability becomes rather  richer in the 
presence of dependent typing, and in this form it has been used to verify the 
accessible region in a quotient lookup table for SRT division [18]. When com- 
bined with other features of the PVS specification language, the table construct 
provides some of the at t ract ive at t r ibutes  of the TableWise [8] and SCR [6] spec- 
ification methods.  Because these constructions are performed in the context of a 
full verification system, we are able to use its theorem prover and model checker 
to establish invariant and reachability properties of the specifications concerned, 
and are able also to compose specifications described by separate tables and t o  
establish refinement and equivalence relations between state  machines specified 
in this manner.  

* This work was supported by the Air Force Office of Scientific Research, Air Force 
Materiel Command, USAF, under contract F49620-95-C0044 and by the National 
Science Foundation under contract CCR-9509931. 
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2 B a s i c  T a b l e s  

Tables can be a convenient way to specify certain kinds of functions. An example 
is the function sign (x), which returns - 1 ,  0, or 1 according to whether its integer 
argument is negative, zero, or positive. As a table, this can be specified as follows. 

X_<lO X - O X: lO  
sign(z) = 0 

This is an example of a piecewise continuous function that  requires definition by 
cases, and the tabular  presentation provides two benefits. 

- It makes the cases explicit, thereby allowing checks that  none of them overlap 
and that  all possibilities are considered. 

- It provides a visually attractive presentation of the definition that  eases 
comprehension. 

The first of these benefits is a semantic issue that  is handled in PVS by the COND 
construct; the second is a syntactic issue that  is handled in PVS by the TABLE 
construct,  which builds on COND. 

Before we introduce these constructs, we should mention that  the PVS spec- 
ification language is a higher-order logic that  supports both predicate subtypes 
and dependent types, and that  the system provides strong assurances that  defini- 
tional constructs (such as recursive function definitions) axe conservative [13,20]. 
Some of the checks necessary to ensure type-correctness and conservative ex- 
tension are not algorithmically decidable; in these cases, PVS generates Type 
Correctness Conditions (TCCs), which are obligations that  must be discharged 
by theorem proving. PVS provides a powerful interactive theorem prover that  
includes decision procedures for linear arithmetic and other theories, and its de- 
fault strategies are often able to discharge TCCs automatically; in more difficult 
cases, the user must guide the theorem prover interactively. Specifications with 
false TCCs are considered malformed and no meaning is ascribed to them. PVS 
allows proof obligations to be postponed, but keeps track of all unsatisfied obli- 
gations; a specification is not considered fully typechecked, and its theorems are 
considered provisional, until all TCCs have been proved. 

2.1 T h e  P V S  COND Cons truc t  

Standard PVS language constructions for specification by cases are the tradi- 
tional IF-THEN-ELSE, and a pat tern matching CASES expression for enumerating 
over the constructors of an abstract data  type. A COND construct has recently 
been added to these. Its general form is shown in ~], where the ci are Boolean 
expressions and the ei are values of some type t. (PVS has subtypes and over- 
loading, so the types of the individual ei must be "unified" to yield the common 
supertype t.) The keyword ELSE can be used in place of the final condition c,~. 
The construct can appear anywhere that  a value of the type of t is allowed. 
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i 
COND ci --~ el, I I IF ci THEN el 

c2 --~ e2, ELSIF c2 THEN e2 

c n  --+ e n  ELSE en  

ENDCOND ENDIF 

2 

Exactly one of the c~ is required to be true; because PVS already supports proof 
obligations in the form of TCCs, it is easy to enforce this requirement by causing 
each COND to generate two TCCs as follows. 

- Disjointness  requires that each distinct ci, cj pair is disjoint. 
- Coverage requires that the disjunction of all the c~ is true. 

The coverage TCC is suppressed if the ELSE keyword is used; also the ci, cj 
component of the disjointness TCC is suppressed when ei and ej are syntactically 
identical. 

A COND has meaning only if its TCCs are true, in which case the general 
COND expression of [] is assigned the same meaning as (and is treated internally 
as) the IF-THEN-ELSE construction shown in [~. Notice that the condition c,~ 
does not appear in the IF-THEN-ELSE translation: if this condition was given 
as an explicit ELSE in the COND, then the "fall through" default is exactly what 
is required; otherwise, the coverage TCC ensures that cn is the negation of the 
disjunction of the other c~, and the "fall through" is again correct. Because COND 
is treated internally as an IF-THEN-ELSE, reasoning involving C0ND requires no 
extensions to the PVS theorem prover. 

Using COND, we can specify the sign function as follows. 

signs: TYPE = { x: in% i x >= -I & x <= i} 

x: VAR int 

sign_cond(x) : signs = 

x < 0 -> -I, 

x = 0 -> O, 

x>O -> ! 

ENDCOND 

COND 

This generates the following TCCs, both of which are discharged by PVS's de- 
fault strategy for TCCs in fractions of a second. 

% Disjointness TCC generated (line 10) for 

% C0ND x < 0 -> -1, x = 0 -> 0, x > 0 -> i ENDC0ND 

sign_cond_TCC2: OBLIGATION (FORALL (x: int): 

NOT (x < 0 AND x = O) 

AND NOT (x < 0 AND x > O) 

AND N0T (x = 0 AND x > 0)); 

Coverage TCC generated (line i0) for 

i% COND x < 0 -> -I, x = 0 -> 0, x > 0 -> 1ENDCOND 

sign_cond_TCC3: OBLIGATION (FORALL (x: int): x < 0 OR x = 0 OR x > 0); 
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The variant specification that  uses an ELSE in place of the condition x > 0 
generates a simpler disjointness TCC (just the first of the three conjuncts in 
sign_cond_TCC2), and no coverage TCC. 

2.2 T h e  P V S  TABLE C o n s t r u c t  

PVS has TABLE constructs tha t  provide a fairly attractive input syntax for one- 
and two-dimensional tables and that  are lATEX-printed as true tables (the ex- 
ample Parnas_Figl that  appears later illustrates this). Their  semantic t reatment  
derives directly from the COND construct. 

2.2.1 O n e - D i m e n s i o n a l  Tables .  The simplest tables in PVS are one- 
dimensional. In their vertical format, they simply replace the -> and , of C0ND 
cases by ] and ] ], respectively, and introduce each case with ]; they also add a 
final [ ] and change the keyword from C0ND to TABLE. The sign example is there- 
fore transformed from a C0ND to the TABLE shown in []. Note that  the horizontal 
lines are simply comments (comments in PVS are introduced by %). 

i 
sign_vtable(x): signs = TABLE i 3 

7. ............. 7. 
Ix<0 I-I II 
7. ............. 7. 
Ix=01 011 
7. ............. 7. 
I x>O i i I) 

ENDTABLE 7, ............. 7. 

! 
sign_h~able(x): signs = TABLE I 4 

% ................... % 

I[ x<01 x--0 I x>0 ]I 
% ................... 7. 
I -I I 0 i I i l 

ENDTABLE 7, ................... 7. 

One-dimensional horizontal tables present the information in a different order, 
and use i [.. �9 ] i to alert the parser to this fact, as illustrated in ~ .  

Both these tabular  specifications are equivalent to sign_cond, generate ex- 
actly the same TCCs, and are t reated the same in proofs. Notice that  tables 
require no extensions to the PVS theorem prover, and the full repertoire of 
proof commands may be applied to constructions involving tables--for  example, 
it is possible to rewrite with an expression whose right hand side is a table. 
Note, however, that  PVS remembers the syntactic form used in a specification 
and always prints it out the same way it was typed in; thus, the prover will print 
a table as a table, even though it is t reated semantically as a COND (which is 
itself t reated as an IF-THEN-ELSE). Of course, the special syntactic t reatment  is 
lost once a proof step (e.g., one that  "lifts" IF-THEN-ELSE constructs to the top 
level) has transformed the structures appearing in a sequent. 

2.2.2 B l a n k  E n t r i e s .  Suppose we reformulated our sign example to take a 
natural  number, rather  than an integer, as its argument. The x ~ 0 case can no 
longer arise and can be omitted from the table. In some circumstances, however, 
we may wish to make it patently clear that  this case should not occur and we 
can do this by including the case, but  with a blank entry for the value of the 
expression. 
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sign_htable(x: nat) : signs = TABLE 7. ................... 7. 
I[ x<0 i x=0 i x>0 ]l 
7. ................... 7. 
i l 0 l i II 

ENDTABLE 7. ................... 7. 

The presence of blank entries changes the coverage TCC: this must now ensure 
that  the disjunction of all the conditions with non-blank entries is true. Notice 
this requires a TCC to be generated even when an ELSE case is present. 

In one-dimensional tables, blank entries can always be removed by simply 
deleting the entire case; this is not so with two-dimensional tables, however, 
where the accessibility of an entry may depend on the conditions labeling both 

its row and column. We describe an example later. 

2 .2.3 E n u m e r a t i o n  Tab les .  These are a syntactic variation that  provide 
more succinct representation when the conditions to a table are all of the form 
x = expression for some single identifier x. In an enumeration table, the identifier 
concerned follows the TABLE keyword, and the conditions of the table simply list 
the expressions; a two-dimensional example appears below in [~. 

Enumeration tables are an important  special case because their TCCs are 
often easily decidable, and this allows some important  optimizations. Observe 
that  the number of conjuncts in a disjointness TCC grows as the square of 
the number of conditions; when enumerating over the values of an enumeration 
type, it is not uncommon to have tens or hundreds of conditions, and thus 
thousands of conjuncts in the disjointness TCC. It is unwieldy and slow to display 
such massive TCCs to the user. PVS therefore recognizes this case and treats  
it specially: when the expressions in an enumeration table are all constructors 
of a single datatype (and the values of an enumeration type are exactly these), 
the disjointness and coverage conditions are trivially decidable and are checked 
internally by the typechecker, which also translates such tables into a datatype 
CASES expression, rather than a r 2 Another special case arises when the 
expressions of an enumeration table are all literal values of some type (the usual 
case is values from some range of integers); again, the disjointness TCC is easily 
decidable and can be checked internally by the typechecker (the coverage TCC 
can require theorem proving and is generated normally). A table is immediately 
flagged as illegal if such internal checks reveal a false TCC. 

2.2.4 T w o - D i m e n s i o n a l  Tab les .  Two-dimensional tables are treated as 
nested COND (or CASES) constructs; more particularly, the columns are nested 
within the rows. Here is a trivial example of a two-dimensional enumeration ta- 
ble in which the rows enumerate the values of a type s t a t e  and the columns 
enumerate the values of a type inpu t .  

2 The prover can provide greater automation for the CASES expression. The user could 
use a CASES construct directly in the one-dimensional case; the main benefit in pro- 
viding the translation automatically is with two-dimensional tables. 
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example(state,input) : some_type = TABLE state , input , 

7. ......... 7. 
J [ x l y l ]  

7. . . . . . . . . . . . . . . . . .  7. 
I a I p l q l l  
7. . . . . . . . . . . . . . . . . .  7. 
I b I q l q l l  

ENDTABLE 7. ................. 7, 

I 5 

This translates internally to the following. 

COND 

state = a -> COND input = x -> p, input = y -> q ENDCOND, 

state = b -> COND input = x -> q, input = y -> q ENDCOND 

ENDCOND 

Notice that  this translation causes disjointness and coverage TCCs for the 
columns to be generated several t imes--once for each row. For example, the 
coverage TCCs generated for the two inner CONDs above have the following form. 

coverage_a: OBLIGATION state = a IMPLIES input = x OR input = y 

coverage_a: OBLIGATION state = b IMPLIES input = x OR input = y 

These appear redundant,  so we might be tempted to use the  following, apparently 
equivalent, translation. 

LET xl = COND input = x -> p, input = y -> q ENDCOND, 

x2 = COND input = x -> q, input = y -> q ENDCOND 

IN COND state = a -> xl, state = b -> x2 ENDCOND 

This generates the following single, simple coverage TCC for the columns. 

eoverage_TCC: OBLIGATION input = x OR input = y ] 
i 

The problem with this translation is that  there may be subtype TCCs gener- 
ated from the terms corresponding to p and q that  must be conditioned on the 
expressions corresponding to a and b in order to be provable. Here is an example 
due to Parnas [14, Figure 1] that  illustrates this. We exhibit this example in the 
form output  by the PVS ISTEX-printer. 

Parnas_Figl((y,x : real)) : real = 
I I1 y = 27 y > 27 y < 27 

x = 3 27 + v / ~  54 + v / ~  y2 + 3 

< 3 i 27 + J - ( ~  - 3) y + v / - ( ~  - 3) y~ + (= - z) ~ 

x > 3] .27 + x/x - 3 2 x y + ~ y 2  + (3 - x) 2 

The subtype constraint on the argument to the square root function (namely, 
tha t  it be nonnegative) generates TCCs in the second and third rows that  are true 
only when the corresponding row constraints are taken into account. The LET 
form translation loses this information. The advantage of the simple translation, 
which is the one used in PVS, is that  it provides more precise (i.e., weaker but  
still adequate) TCCs, and therefore admits more specifications. 
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2.3 Applications 

The PVS table constructs described above have been used in several applications 
performed by ourselves and others--indeed, some elements in the PVS treatment 
of tables (notably, blank entries, and the optimizations for enumeration tables) 
evolved in response to these applications. 

In one application, PVS is being employed in analysis of new requirements 
documented in "Change Requests" (CRs) for the flight software of the Space 
Shuttle. This work is undertaken as part of a project involving staff from several 
NASA Centers (Langley, Johnson, and JPL) and Requirements Analysts (RAs) 
from the team at Lockheed Martin (formerly IBM) that develops this software. 
Running alongside what is generally considered an exemplary (though manual) 
process for requirements review, this experiment provides useful data on the 
effectiveness of automated formal analyses [2,17]. 

One of the CRs focused on improving the display of flight information to 
Shuttle pilots guiding the critical initial bank onto the "Heading Alignment 
Cylinder" (HAC) during descent. The CR documented key portions of the re- 
quired control logic in tabular form, and was readily formalized using PVS tables. 
Attempts to discharge the TCCs generated by these tables immediately indicated 
the need to document implicit "domain knowledge," including constraints such 
as "Major Mode = 305 or 603 implies iphase < 3," and "wowlon can be true 
only if Maj or Mode = 305 or 603." Such domain knowledge was incorporated 
into the specification using dependent predicate subtyping and was gradually 
extended and refined through an iterative process that relied on the automated 
strategies for proving TCCs that are built in to PVS. 

Observe that proofs of the HAC TCCs could be automated because neces- 
sary domain knowledge was supplied through the type system, using predicate 
and dependent subtyping. For example, the constraints mentioned above were 
specified as follows (• and wowlon are record fields; notice that the latter 
has a type that is a subtype of bo01!). 

iphase: {p: iphase I (mode = m m602 => p >= 4) AND 

((mode = mm305 OR mode = mm603) => p <= 3)} 

wowlon: {b: bool I b => (mode = mm305 OR mode = mm603)} 

The PVS prover can make very effective and automated use of information sup- 
plied in this way; a system lacking such a rich type system would probably require 
an interactive proof to provide the domain knowledge in the form of axioms. (Of 
course, PVS's decision procedures for linear arithmetic also contributed to the 
automation of these proofs.) 

After incorporating all constraints identified by the RAs, it was found that 
the conditions for several rows in one table still overlapped, and this led to 
identification of a missing conjunct in some of the conditions. In addition to 
discovery of this error, the requirements analysts felt that explicit identification 
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and documentation of the domain knowledge was a valuable product of the 
analysis [17]. 

Another application for PVS tables has been in verification of fast hardware 
division algorithms. The notorious Pentium FDIV bug, which is reported to have 
cost Intel $475 million, was due to bad entries in the quotient lookup table for 
an SRT divider. Triangular-shaped regions at top and bottom of these tables are 
never referenced by the algorithm; the Pentium error was that certain entries 
believed to be in this inaccessible region, and containing arbitrary data, were, 
in fact, sometimes referenced during execution [15]. 

An SRT division algorithm similar to that used in the Pentium has been 
specified and verified in PVS [18]. The quotient lookup table for this algorithm 
was specified as a PVS table (see [18, Appendix A]) which uses blank entries to 
indicate those regions of the table that are believed to be inaccessible. PVS gen- 
erates 23 coverage TCCs to ensure that these entries will never be encountered; 
verification of the algorithm (which can be done largely automatically in PVS) 
then ensures that all the nonblank table entries are correct. Injection of an error 
similar to that in the Pentium leads to a failed TCC proof whose final sequent is 
a counterexample that highlights the error [18]. Miner and Leathrum have used 
this capability of PVS to develop several new SRT tables [11], each in less than 
three hours. 

3 Decis ion Tables 

Decision tables associate Boolean expressions with the "decision" or output to 
be generated when a particular expression is true. There are many kinds of 
decision tables; the ones considered here are from a requirements engineering 
methodology developed for avionics systems by Lance Sherry of Honeywell [22], 
and given mechanized support in lableWise, developed by Hoover and Chen at 
ORA [8]. The following is a simple decision table (taken from [8, Table 2]). 

Input Variables 

Flightphase 

AC_AIt > 400 

compare(AC_Alt, Acc_Alt) 
Alt_Capt_Hold 

compare(Alt_Target, 

prev_Alt_Target) 

Operational Procedure 
Takeoff Climb II Climb_Int _level II Cruise 

climb climb climb climb climb cruise 

true true * * * * 

LT LT GE GE * GT 

false true false true true true 

�9 GT * GT * EQ 

This table describes the conditions under which each of the four "opera- 
tional procedures" Takeoff, Climb, Climb_Intlevel, and Cruise should be 
selected. Each of the columns beneath the name of an operational procedure 
gives a conjunction of conditions under which that procedure should be selected 
(where * indicates "don't care"). For example, the third and fourth columns in 
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t h e  b o d y  of  the table indicate t ha t  the  operat ional  procedure  Climb should be 
used if the F l i g h t p h a s e  is c l imb,  AC-~,lt is greater  than  or equal to Acc_Alt ,  
and ei ther  Al t_Capt_Hold  is false, or it is true and A l t _ T a r g e t  is greater  t han  
p r e v _ A l t _ T a r g e t .  The  columns forming a subtable  benea th  each operat ional  
procedure  are similar to the A N D / O R  tables used in the RSML nota t ion  of  
Leveson and  colleagues [10]. 

The  PVS TABLE cons t ruc t  cannot  represent this type  of  decision table di- 
rectly:  we need some addit ional  mechanism to represent a conjunct ion such as 

(Flightphase = climb) A (AC_AIt ___ Acc_Alt) A -~Alt_Capt_Hold 

by the compact list given in the third column of the table. 

Now the list (climb, *, GE, false, *) from that column can be inter- 

preted as the argument list to a function X that treats the first element as a 

function to be applied to Flightphase , the second as a function to be applied 

to  the expression AC_Alt > 400 and so on, as follows. 

X(a,b,c,d,e): bool = 
a(Flightphase) & b(AC_Alt > 400) & c(AC_Alt,Acc_Alt) 

d(Alt_Capt_Hold) ~ e(Alt_Target,prev_Alt_Target) 

We can then use this cons t ruc t ion  to  specify the  third  column of the  decision 
table  as the  following row from a vertical one-dimensional  PVS table; the com- 
plete table  is shown in Appendix  A (taken from [12], where full details may  be 
found).  

% . . . . . . . . . .  I . . . . . . .  I . . . . . . .  I . . . . . . .  I . . . . . . .  I . . . . . . . . . . . . . . . . .  % 
., X ( o l i m , ? . .  , . . . . . . . . . .  
% . . . . . . . . . .  I . . . . . . .  I . . . . . . .  

The  functions appear ing  in the a rgument  list to  X are defined as follows (note 
t ha t  * is overloaded and tha t  c l i m b ?  is a recognizer for an enumera ted  type) .  

q: VAR bool 
false(q): bool = NOT q 

*(q): bool = TRUE 

x, y: VAR nat 
GE(x, y): bool = x >= y 
*(x, y): bool = TRUE 

The  disjointness T C C  from this table immedia te ly  identifies two overlapping 
cases, while the  coverage T C C  identifies four t ha t  are missing. For example,  one 
of the four unproved sequents 3 f rom the  coverage T C C  is the  following. 

3 PVS uses a sequent calculus presentation whose interpretation is that  the conjunc- 
tion of formulas above the turnstile line ( ] . . . . . .  ) should imply the disjunction of 
formulas below the line. The appearance of a formula on one side of the line is 
equivalent to its negation on the other, and this structural rule is used to eliminate 
top-level negations. Names with embedded ! characters are Skolem constants derived 
from variables with the same root name. 
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decision_table_TCC2.1 : 

I . . . . . . .  

[i] AC_AIt!I > 400 

[2] Alt_Capt_Hold!l 

[3] AC_AIt!I >= Acc_Alt!l 

I 6 

Unproven sequents such as this, with no formulas above the line, indicate the 
failure to select an operational procedure when all the formulas below the line 
are false. This one, for example, identifies the failure to consider the case when 
AC_AIt is not greater than 400, Alt_Capt_Hold is false, and AC_AIt is less than 
Acc_Alt. The six flaws identified in this way are identical to those found in this 
example by the special-purpose tool Tab]eWise [8]. 

Unlike PVS, TableWise presents the anomalies that it discovers in a tabular 
form similar to that of the original decision table; TableWise can also generate 
executable Ada code and English language documentation from decision tables. 
These benefits are representative of those that can be achieved with a special- 
purpose tool. On the other hand, PVS's more powerful deductive capabilities also 
provide benefits. For example, PVS can settle disjointness and coverage TCCs 
that depend on properties more general than the simple Boolean and arithmetic 
relations built in to TableWise and similar tools. The limitations of these tools 
are illustrated by Heimdahl [3], who describes spurious error reports when a 
completeness and consistency checking tool for the AND/OR tables of RSML 
(developed with Leveson [5]) was applied to TCAS II. These spurious reports 
were due to the presence of arithmetic and defined functions whose properties 
are beyond the reach of the BDD-based tautology checker incorporated in the 
tool. As Heimdahl notes [3, page 81], a theorem prover is needed to settle such 
properties; he and Czerny are now experimenting with PVS for this purpose [4]. 

A theorem prover such as PVS can also examine questions beyond simple 
completeness and consistency. For example, the incompleteness and inconsis- 
tencies detected in the example decision table can be remedied by adding an 
ELSE clause and by replacing the second and third "don't care" entries under 
Climb_Int_level by f a l s e  and LT, respectively. The TCC generated by this 
modified specification is proved automatically by PVS, so we may proceed to 
examine general properties of the decision table. To check that the specifica- 
tion matches our intent, we can use conjectures that we believe to be true as 
"challenges." For example, we may believe that when AC_Alt = Acc_Alt, the 
operational procedure selected should match the Fl ightphase .  We can check 
this in the case that the F l igh tphase  is c ru i se  using the following challenge. 

test: THEOREM AC_AIt = Acc_Alt => 

decision_table(cruise, AC_AIt, Acc_Alt, 

Alt_Target, prev_Alt_Target, Alt Capt_Hold) = Cruise 

This is easily proved by PVS's standard (grind) strategy. However, when we 
try the corresponding challenge for the case where F l igh tphase  is climb, we 
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discover tha t  the conjecture is not proved, and actually is false in the case where 
Alt_Capt_Hold is true and Alt_Target <= prev_Alt_Target, thereby exposing 
a flaw in either our expectations or our formalization of the specification. Me- 
chanically supported challenges of this kind illustrate the utility of undertak- 
ing the analysis of tabular specifications in a context that provides theorem 
proving. Special-purpose tools for tabular specifications generally provide only 
completeness and consistency checking, and perhaps some form of simulation. 
Such tools would help identify the anomaly just described only if we happened 
to choose to simulate a case where Alt_Capt_Hold is true and Aft_Target <= 
prev_Alt_Target. 

4 Transit ion Relat ions  and Mode l  Checking 

Decision tables provide a way to specify the selection of operational procedures 
to be executed at each step. However, the model of computat ion tha t  repeatedly 
performs these selection and execution steps is understood informally and is 
not explicit in the PVS specifications. Consequently, it is not possible to pose 
and examine overall system proper t ies- -such as whether a certain proper ty  is 
invariant, or another  is reachable- -wi thout  formalizing more of the underlying 
model of computat ion.  Transition relations provide a way to do this, and the 
SCR method is a way to present such relations in a tabular  manner  [7]. 

The following is a typical SCR "mode transit ion table" (taken from Atlee 
and Gannon [1, Table 2]). This system, a simplified automobile cruise control, 
has four modes (o f f ,  i n a c t i v e ,  c r u i s e ,  and o v e r r i d e )  and the table describes 
the conditions under which it makes transitions from one mode to another.  

Conditions 
II M~ II Ignited~ RunningIW~176 I Brakel Activate IDeaetivatelResumelt M~ II 

Off @T - - Inactive 
Inactive @F 

T 
Cruise @F 

i - 

@F 

T 
T 

T - F @T 

@F - 
@T 

- @ T  - 

@F - 
T - F @T 
T - F - 

@T 
Override 

Off 
Cruise 
Off 
Inactive 
Inactive 
Override 
Override 
Off 
Inactive 
Cruise 

@T Cruise 

An �9 entry indicates the case where the condition labeling tha t  column changes 
from false to true, while OF indicates the opposite transition; a T entry indicates 
the case where the condition labeling tha t  column remains true through the 
transition, F indicates the case where it remains false, and a dash indicates 
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"don't  care." Thus the third row indicates that  the system transitions from the 
I n a c t i v e  mode to the Cru i s e  mode if A c t i v a t e  goes true, while I g n i t e d  and 
Running remain true and Brake remains false. 

To model this type of specification in PVS, we specify a c o n d i t i o n  as a 
predicate on inputs to the system, then a tT (which represents �9 is a higher 
order function that  takes a condition and returns a relation on pairs of inputs 
(namely, one that  is true when the condition is .false when applied to the first 
and true when applied to the second). The constructions for a tF  (representing 
�9 T, F, and dc (representing "don't  care") are specified similarly. 

scr[ input, mode, output: TYPE ]: THEORY 

BEGIN 
condition: TYPE = pred[input] 

p,q: VAR input 
P: VAR condition 

atT(P)(p,q): bool = NOT P(p) & P(q) ~ @T(P) 

atF(P)(p,q): bool = P(p) & NOT P(q) ~ �9 

T(P)(p,q): bool = P(p) & P(q) 

F(P)(p,q): bool = NOT P(p) & NOT P(q) 
dc(P)(p,q): bool = true ~ don't care 

With these constructions, the mode transition table above can be represented 
in PVS as shown in Appendix B (full details are given in [12]). Typechecking 
this specification generates several TCCs; those for the transitions from mode 
i n a c t i v e  are proved automatically, but those from modes c r u i s e  and o v e r r i d e  
are not. These unproved TCCs yield subgoals that  pinpoint problems in the 
specification, rather  in the way that  [ ]  identified problems in the decision table. 
For example, the successor to c r u i s e  mode is ambiguous in the case where 
t o o f a s t  and d e a c t i v a t e  both go from false to true: the first of these causes a 
transition to i n a c t i v e  mode, while the second causes a transition to o v e r r i d e  
mode. Repairing these flaws requires several changes to the table and- -as  with 
the Space Shuttle example--adding some "domain knowledge" (such as that  
t o o f a s t  implies running) .  

Because a mode transition table specifies how the system proceeds from one 
mode to another, we can examine properties of the computations that  this in- 
duces. To do this, we first need to derive the transition relation on states that  is 
implicit in a mode table. We identify the instantaneous s t a t e  of the system with 
its current mode and the current values of its input variables. We specify this as 
a record in PVS; a transition relation is a predicate on pairs of such states. 

state: TYPE = [# mode: mode, vars: input #] 
transition_relation: TYPE = pred[[state, state]] 

Recall that  a mode transition table has the following signature. 
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t 

mode_table: TYPE = [mode, input, input-> mode] I 

We can therefore define a function t r an s  that takes a mode table and returns 
the corresponding state transition relation. 

trans(mt: mode_table): transition_relation = 
(LAMBDA (s,t: state): mode(t) = mt(mode(s), vats(s), vats(t))) 

The branching time temporal logic CTL provides a convenient way to specify 
certain properties of the computations induced by a transition relation, and 
PVS can automatically verify CTL formulas for transition relations over finite 
types by using a decision procedure for Park's #-calculus to provide CTL model 
checking [16]. An example of a property about this specification that can be 
specified in CTL is the following invariant. 

In c r u i s e  mode, the engine is running, the vehicle is not going too:fast ,  
the brake is not on, and d e a c t i v a t e  is not selected. 

We can examine this property with PVS in the following manner. 

IMPORTING MU@ctlops, cruise_tab 
p,q,r: var state 
trans: transition_relation = trans(deterministic) 
init(p): bool = off?(p) ~ NOT ignited(p) 

safe4: THEOREM init(p) => AG(trans,(LAMBDA q: 
cruise?(q) 

=> running(q) & NOT (toofast(q) OR brake(q) OR deactivate?(q))))(p) 

safeS: THEOREM init(p) 
=> AG(trans, (LANBDA q: override?(q) => running(q)))(p) 

Here, cruise_tab is the PVS theory that defines the mode table deterministic 
(formed by correcting the errors found in the table original discussed above), 
and ctlops is the PVS theory (from the library MU) that defines the CTL 
operators. The function trams introduced above is applied to the mode table 
deterministic to construct a transition relation (also called trans). We char- 
acterize the initial state as one whose mode is off and in which the engine is not 
ignited, and specify (as safe4) the invariant mentioned above (AG is the CTL 
operator meaning "in every reachable state"). Another plausible invariant prop- 
erty is specified by the formula sa:feS. The PVS model-check command verifies 
formula safe5 but fails on sa:fe4. This prompts closer examination of the spec- 
ification and reveals that, although c r u i s e  mode is exited when too:fas t  goes 
true, the transitions into c r u i s e  mode neglect to check that t o o f a s t  is false be- 
fore making the transition. The correction is to add the condition F ( t o o f a s t )  
to the three transitions into c r u i s e  mode, and PVS is able to verify the f~ormula 
sa:fe4 for the corrected specification. 
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Similar to the TableWise tool for decision tables, Heitmeyer and colleagues 
have developed the SCR* tool for checking consistency of SCR tabular speci- 
fications [6], while Atlee and colleagues have developed a translator that turns 
SCR tables into a form acceptable to the SMV model checker [23]. These special- 
purpose tools have the advantage of being closely tailored to their intended uses 
and are scalable to larger examples than is convenient for the PVS treatment. 
On the other hand, the PVS treatment required no customized development: it 
simply builds on capabilities such as tables, higher-order logic, theorem proving, 
and model checking that are already present in PVS. 

~rthermore,  the PVS treatment can draw on the full resources of the lan- 
guage and system to combine methods in novel ways, Or to conduct customized 
analyses. For example, we have used a variant of PVS's treatment of SCR ta- 
bles to specify the nondeterministic mode transitions of interacting "climb" and 
"level" components in the requirements for a simple "autopilot" [12, section 
4.3]. The transitions of the components were specified as separate tables and 
combined by disjunction (representing interleaving concurrency). The combined 
specification was then tested against a number of challenge properties using 
model checking. A deterministic "implementation" specification of the autopi- 
lot was constructed from two "phases" using relational composition to specify 
sequential execution. This specification was also tested against the challenge 
properties using model checking. Finally, model checking was used to show that 
the behaviors induced by the requirements and the implementation specifications 
are equivalent (this property can be expressed as a CTL formula). 

5 C o n c l u s i o n  

We have described PVS's capabilities for representing tabular specifications, 
illustrated how these interact synergistically with other capabilities such as 
typechecker-generated proof obligations, dependent typing, higher-order func- 
tions, model checking, and general theorem proving, and described some ap- 
plications. We demonstrated how these capabilities of the PVS language and 
verification system can be used in combination to provide customized support 
for existing methodologies for documenting and analyzing requirements. Because 
they use only the standard capabilities of PVS, users can adapt and extend these 
customizations to suit their own needs. 

The generic support provided for tables and for model checking in PVS 
may be compared with the more specialized support provided in tools such as 
ORA's TableWise [8], NRL's SCR* [6, 7], and Leveson and Heimdahl's consis- 
tency checker for RSML [5]. Dedicated, lightweight tools such as these are likely 
to be superior to a heavyweight, generic system such as PVS for their chosen 
purposes. Our goal in applying PVS to these problems is not to compete with 
specialized tools but to complement them. The generic capabilities of PVS can 
be used to prototype some of the capabilities of specialized tools (this was done 
in the development of TableWise), and can also be used to supplement their 
capabilities when comprehensive theorem proving and model checking power is 
needed. 
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Appendix 

A Example Decision Table 

q:VAR bool 

true(q): bool = q 

false(q): bool = NOT q 

*(q): bool = TRUE 

x,y:VAR n a t  

GT(x, y): bool = x > y 

GE(x, y): bool = x >= y 

Eq(x, y): bool = x = y 

LT(x, y): bool = x < y 

LE(x, y): bool = x <= y ; 

*(x, y): bool = TRUE 

operational_procedures: TYPE = {Takeoff, Climb, Climb_Int_Level, Cruise" 

flight_phases: TYPE = {climb, cruise} 

Flightphase: VAR flight_phases 

AC_AIt, Acc_Alt, Alt_Target, prev_Alt_Target: VAR nat 

Alt_Capt_Hold: VAR bool 

i X(climb? 

I X(cruise? 

ENDTABLE 

decision_table(Flightphase, AC_AIt, Acc_Alt, Alt_Target, 

Prey_Air_Target, Alt_Capt_Hold): operational procedures 

LET X = (LAMBDA (a: pred[flight_phases]), (b: pred[bool]), 

(c: pred[[nat,nat]]), (d: pred[bool]), (e: pred[[nat,nat]]) 

a(Flightphase) & 

b(AC_Alt > 400) 

c(AC_Alt,Acc_Alt) 

d(Alt_Capt_Hold) 

e(AltTarget,prev_Alt_Target)) INTABLI 

t I I 1 t 

I I I I I 

v v v v v Operational Procedure 

% .......... I ....... I ....... I ....... i ....... I ................. % 

I X(climb? true , LT , false * ) I Takeoff il 

% .......... I ....... I ....... I ....... I ....... I .................. % 

I X(climb? true , LT , true GT) { Takeoff 11 

Z .......... I ....... I ....... I ....... I ....... I .................. % 

I X(climb? * , GE , false * ) I Climb II 

% .......... I ....... I ....... i ....... I ....... I .................. % 

I X(climb? * , GE , true GT) I Climb II 

% .......... I ....... I ....... I ....... I ....... I- ................. % 

�9 , * , true ~ ) I Climb_Int_Level II 

I ....... I ....... I ....... I ....... I .................. % 

�9 , GT , true EQ) I Cruise il 

I ....... I ....... i ....... I ....... I .................. % 
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B Example SCR Table 

e v e n t _ c o n s t r u c t o r :  T Y P E  = [ c o n d i t i o n  - >  e v e n t ]  

E C :  T Y P E  = e v e n t _ c o n s t r u c t o r  

PC(A,B,C,D,E,F,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) ~ B(b)(p,q) 

& C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & F(f)(p,q) R G(g)(p,q) 

Note: PC stands for "pairwise conjunction" 

original(s: modes, (p, q: monitored_vats)): modes = 

LET 

x: condsT = (ignited, running, toofast, brake, activate, deactivate, resume) 

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q)) 

IN TABLE s 

loll] TABLE 

.... I .... I .... I .... I .... I .... I .... I ..... I .......... II 
JX( art , dc , dc , dc , dc , dc , dc )J inactive JJ 

.... I .... I .... I .... I .... I .... I .... I ..... I .......... II 
I ELSE I off I I  

Z . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . .  I . . . . . . . . . .  I I  

E N D T A B L E  I I  

Jinactivel T A B L E  

. . . .  I - - - - I  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
iX( atF , dc , dc , dc , dc , dc , dc )J off 

Z .... I .... I .... I .... I .... I .... I .... I ..... I .......... 
IX( T , T , dc , F ,arT , dc , dc )J cruise 

Z .... I .... I .... I .... I .... I .... I .... I ..... I .......... 
J ELSE [ inactive 

.... I ................................... I .......... 

ENDTABLE [J 

[cruise[ T A B L E  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  I I  
IX( atF, dc, dc, dc, dc, dc, dc )J o f f  [J 

Z .... I .... I .... I .... I .... I .... I .... I ..... I .......... II 
[X( dc ,atF , dc , dc , dc , dc , dc )J inactive J[ 

Z .... I .... I .... I .... I .... I .... I .... I ..... I .......... 
I X (  d c  , d c  , a r T  , d c  , d c  , d c  , d c  ) J  i n a c t i v e  

Z . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
i X (  " . d c  , d c  , d c  , a r T  , d c  , d c  , d c  ) [  o v e r r i d e  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
J X (  d c  , d c  , d c  , d c  , d c  , a r t  , d c  ) J  o v e r r i d e  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
[ ELSE J cruise 

.... I ................................... I .......... 

ENDTABLE J[ 

[override[ TABLE 

Z .... I .... I .... I .... I .... I .... I .... I ..... I .......... 
JX( atF , dc dc , dc , dc , dc , dc )J off 

.... I .... I .... I .... I .... I .... I .... I ..... I .......... 
iX( dc ,atP , do , dc , dc , dc , do )J inactive 

.... I .... I .... I .... I .... I .... i .... I ..... I .......... 
J X (  T , T , d c  , F , a r T  , d c  , d c  ) [  c r u i s e  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
[ X (  T , T , d c  , F , d c  , d c  , a r T  ) ]  c r u i s e  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . . .  I . . . . . . . . . .  
J ELSE J override 

---I ................................... I ........... 

E N D T A B L E  I [  

E N D T A B L E  


