Skip to main content

Stability and sensitivity analysis of solutions to infinite-dimensional optimization problems

  • Invited Presentations
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

Abstract

A survey of stability and sensitivity results for the solutions to parameter depenedent cone constrained optimization problems in abstract Banach spaces is presented. An application to optimal control problems for nonlinear ordinary differential equations subject to control and state constraints is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower E.L., Georg K., „Numerical Continuation Methods. An Introduction,“ Springer Series in Computational Mathematics Vol 13, Springer Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  2. Alt W., “On the approximation of infinite optimization problems with an application to optimal control problems,” Appl. Math. Optim. 12 (1984), 15–27.

    Article  MATH  MathSciNet  Google Scholar 

  3. Alt W., “Stability of solutions for a class of nonlinear cone constrained optimization problems, Part 1: Basic theory,” Numer. Funct. Anal. and Optimiz. 10 (1989), 1053–1064.

    Article  MATH  MathSciNet  Google Scholar 

  4. Alt W., “Stability of solutions for a class of nonlinear cone constrained optimization problems, Part 2: Application to parameter estimation,” Numer. Funct. Anal. and Optimiz. 10 (1989), 1065–1076.

    Article  MATH  MathSciNet  Google Scholar 

  5. Alt W., “Stability for parameter estimation in two point boundary value problems,” Optimization 22 (1991), 99–111.

    Article  MATH  MathSciNet  Google Scholar 

  6. Alt W., “The Lagrange-Newton method for infinite-dimensional optimization problems,” Numer. Funct. Anal. and Optimiz. 11 (1990), 201–224.

    Article  MATH  MathSciNet  Google Scholar 

  7. Alt W., “Parametric programming with applications to optimal control and sequential quadratic programming,” Bayreuther Mathematische Schriften 35 (1990), 1–37.

    Google Scholar 

  8. Alt W., „Stability of Solutions and the Lagrange-Newton Method for Nonlinear Optimization and Optimal Control Problems,” (Habilitationsschrift), Universität Bayreuth, Bayreuth, 1990.

    Google Scholar 

  9. Alt W., Malanowski K., „The Lagrange-Newton method for nonlinear optimal control problems”, Comput. Optim. and Applications 2 (1993), 77–100.

    Article  MATH  MathSciNet  Google Scholar 

  10. Alt W., Mackenroth U., „Convergence of finite element approximations to state constrained comvex boundary control problems,” SIAM J. Control and Optimization 27 (1987), 718–736.

    Article  MathSciNet  Google Scholar 

  11. Alt W., Sontag R. Tröltzsch F., „An SQP method for optimal control of weakly singular Hammerstein integral equations”, Deutsche Forschungsgemeinschaft, SPP „Anwendungsbezogene Optimierung und Steuerung”, Report No. 423, Chemnitz, 1993.

    Google Scholar 

  12. Bank B., Guddat J., Klatte D., Kummer B., Tammer K., „Non-linear Parametric Optimization” Birkhäser Verlag, Basel, 1983.

    MATH  Google Scholar 

  13. Barbet L., „Lipschitzian properties of the optimal solutionns for parametric variational inequalities in Banach spaces” (to be published)

    Google Scholar 

  14. Bock H. G., „Zur numerischen Behandlung zuschtandsbeschränkter Steuerungsprobleme mit Mehrzielmethode und Homotopierverfahren, ZAMM 57 (1977), T 266–T 268.

    MathSciNet  Google Scholar 

  15. Bock H. G., „Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen,” Bonner Mathematische Schriften 183, Bonn, 1987.

    Google Scholar 

  16. Bonnans J.-F., Sulem A., „Pseudopower expansion of solutions of generalized equations and constrained optimization problems” (to be published).

    Google Scholar 

  17. Brdyś M., „Theory of Hierarchical Contronl Systems for Complex Slowlyvarying Processes,” Politechnika Warszawska, Prace Naukowe, Elektronika, z 47, Warszawa, 1980 (in Polish).

    Google Scholar 

  18. Chao G. S., Friesz T. L., „Spacial price equilibrium sensitivity analysis,” Transportation Research 18B (1984), 423–440.

    Article  Google Scholar 

  19. Colonius F., Kunisch K., “Stability for parameter estimation in two point boundary value problems,” Journal für die Reine und Angewandte Mathematik 370 (1986), 1–29.

    MATH  MathSciNet  Google Scholar 

  20. Colonius F., Kunisch K., “Stability of perturbed optimization problems with applications to parameter estimation,” Report Nr. 205, Institut für Dynamische Systeme, Universität Bremen, 1989.

    Google Scholar 

  21. Defermos S., Nagurney A., „Sensitivity analysis for the asymetric network equilibrium problem,” Math. Programming 28 (1984), 174–184.

    Article  MathSciNet  Google Scholar 

  22. Dontchev A. L., “Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems,” Lecture Notes in Control and Information Sciences Vol. 52, Springer Verlag, Berlin-Heidelberg-New York, 1983.

    Book  MATH  Google Scholar 

  23. Dontchev A. L., Hager W. W., „Lipschitz stability in nonlinear control and optimization”, SIAM J. Control and Optimization 31 (1993), 569–603.

    Article  MATH  MathSciNet  Google Scholar 

  24. Dontchev A. L., Hager W. W., Poore A B., Yang B., „Optimality, stability and convergence in nonlinear control” (to be published).

    Google Scholar 

  25. Fiacco A. V., “Sensitivity analysis for nonlinear programming using penalty methods,” Mathematical Programming 10 (1976), 287–311.

    Article  MATH  MathSciNet  Google Scholar 

  26. Fiacco A. V., “Introduction to sensitivity and stability analysis in nonlinear programming,” Academic Press, New York-London, 1983.

    MATH  Google Scholar 

  27. Findeisen W., Bailey F. N., Brdyś M., Malinowski K., Tatjewski P., Woźniak A., „Control and Coordination in Hierarchical System,” J. Wiley & Sons, Chichester-New York-Brisbane-Toronto, 1980.

    Google Scholar 

  28. Friesz T. L., Tobin R. L., Miller T., „Existence theory for spacially competitive network facility location models.” Annals Oper. Res. 18 (1989), 267–276.

    Article  MATH  MathSciNet  Google Scholar 

  29. Gahutu W. H., Looze D. P., „Parametric coordination in hierarchical control,” Large Scale Systems 8 (1985), 33–45.

    MATH  MathSciNet  Google Scholar 

  30. Gfrerer H., Guddat J., Wacker HJ., „A globally convergent algorithm based on imbedding and parametric optimization,” Computing 30 (1983), 225–252.

    Article  MATH  MathSciNet  Google Scholar 

  31. Guddat J., Guerra-Vazques F., Jongen H. Th., „Singularities, Path Following and Jumps,” J. Wiley & Sons, Chichester, 1990.

    Book  Google Scholar 

  32. Hager W. W., “Lipschitz continuity for constrained processes,” SIAM J. Control and Optimization 17 (1979), 321–337.

    Article  MATH  MathSciNet  Google Scholar 

  33. Hager W. W., “Approximations to the multiplier methods,” SIAM J. Numer. Anal. 22 (1985), 16–46.

    Article  MATH  MathSciNet  Google Scholar 

  34. Hager W. W., “Multiplier methods for nonlinear optimal control,” SIAM J. Numer. Anal. 27 (1990), 1061–1080.

    Article  MATH  MathSciNet  Google Scholar 

  35. Hager W. W., Ianculescu, G. D., “Dual approximations in optimal control,” SIAM J. Control and Optimization 22 (1984), 423–465.

    Article  MATH  MathSciNet  Google Scholar 

  36. Haraux A., „How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities,” J.Math.Soc. Japan 29 (1977), 615–632.

    Article  MATH  MathSciNet  Google Scholar 

  37. Haslinger J., Neittaanmäki P., „Finite Element Approximation for Optimal Shape Design: Theory and Applications,” J. Wiley $ Sons, Chichester, 1988.

    MATH  Google Scholar 

  38. Ioffe A., „On sensitivity analysis of nonlinear programs in Banach spaces: the approach via composite unconstrained optimization,” to appear in SIAM J. Optimization.

    Google Scholar 

  39. Ito K., Kunisch K., “Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation,” J. Diff. Equations 99, 1–40.

    Google Scholar 

  40. Ito K., Kunisch K., “The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces,” Mathematical Programming 46 (1990), 341–360.

    Article  MATH  MathSciNet  Google Scholar 

  41. Ito K., Kunisch K., “The augmented Lagrangian method for parameter estimation in elliptic systems,” SIAM J. Control and Optimization 28 (1990), 113–136.

    Article  MATH  MathSciNet  Google Scholar 

  42. Ito K., Kunisch K., “An augmented Lagrangian technique for variational inequalities,” Appl. Math. Optim. 21 (1990), 223–241.

    Article  MATH  MathSciNet  Google Scholar 

  43. de Jong J. L., Machielsen K. C. P., “On the application of sequential quadratic programming to state constrained optimal control,” in: IFAC, Control Applications of Nonlinear Programming, Capri, Italy, 1985.

    Google Scholar 

  44. Kall P., „On approximations and stability in stochastic programming,” in: J. Guddat, H. Th. Jongen, B. Kummer B., F. Nozicka, (eds), Parametric Optimization and Related Topics, Academie Verlag, Berlin, 1987.

    Google Scholar 

  45. Kelley C. T., Wright S. J., „Sequential quadratic programming for certain parameter identification problems” (to be published).

    Google Scholar 

  46. Kruskal J. B., „Two convex counterexamples: a discontinuous envelope function and a nondifferentiable nearest-point mapping,” Proc. Amer. Math. Soc. 23 (1969), 697–703.

    Article  MATH  MathSciNet  Google Scholar 

  47. Lasiecka I., „Boudary control of parabolic systems: finite element approximation,” Appl. Math. Optim. 6 (1980), 31–62.

    Article  MATH  MathSciNet  Google Scholar 

  48. Lasiecka I., „Ritz-Galerkin approximation of the time optimal boudary control problem for parabolic system with Dirichlet boundary conditions,” SIAM J. Control and Optimization 22 (1984), 477–500.

    Article  MATH  MathSciNet  Google Scholar 

  49. Levitin E.S., “On the local perturbation theory of a problem of mathematical programming in a Banach space,” Soviet Math. Dokl. 16 (1975), 1354–1358.

    MATH  Google Scholar 

  50. Levitin E. S., “Differentiability with respect to a parameter of the optimal value in parametric problems of mathematical programming,” Cybernetics 12 (1976), 46–64.

    Google Scholar 

  51. Levitin E. S., „Perturbation Theory in Mathematical Programming and its Applications,” Nauka, Moscow, 1992, (in Russian), to be published in English by J. Wiley & Sons.

    Google Scholar 

  52. Lundberg B. N., Poore A. B., „Numerical continuation and singularity detection methods for parametric nonlinear programming,” SIAM J. Optim. 3 (1993), 134–154.

    Article  MATH  MathSciNet  Google Scholar 

  53. Machielsen K, C. P., “Numerical solution of optimal control problems with state constraints by sequential quadratic programming in function space,” CWI Tract 53, Amsterdam, 1987.

    Google Scholar 

  54. Malanowski K., „Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal control problems,” Appl. Math. Opt. 8 (1981), 69–95.

    Article  MathSciNet  Google Scholar 

  55. Malanowski K., “Second order conditions and constraint qualifications in stability and sensitivity analysis of solutions to optimization problems in Hilbert spaces,” Appl. Math. Opt. 25 (1992) 51–79.

    Article  MATH  MathSciNet  Google Scholar 

  56. Malanowski K., „Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems,” to appear in Advances in Math. Sc. Appl.

    Google Scholar 

  57. Malanowski K., „Stability and sensitivity of solutions to nonlinear optimal control problems”, to appear in Appl. Math. Optim.

    Google Scholar 

  58. Malanowski K., „Regularity of solutions in stability analysis of optimization and optimal control problems.”, to appear in Control and Cybernetics.

    Google Scholar 

  59. Marcotte P., „Network design with congestion effects: a case of bilevel programming,” Math. Programming 34 (1986), 142–162.

    Article  MATH  MathSciNet  Google Scholar 

  60. Maurer H., “First and second order sufficient optimality conditions in mathematical programming and optimal control,” Mathematical Programming Study 14 (1981), 163–177.

    Article  MATH  Google Scholar 

  61. Maurer H., Pesch H. J., „Solution differentiability for nonlinear parametric control problems,” Deutsche Forschungsgemeinschaft, SPP „Anwendungsbezogene Optimierung und Steuerung,” Report No. 316, München, 1991.

    Google Scholar 

  62. Maurer H., Zowe J., „First-and second order sufficient optimality conditions for infinite-dimensional programming problems,” Math. Programming 16 (1979), 98–110.

    Article  MATH  MathSciNet  Google Scholar 

  63. Mignot F., „Contrôle dans les inéquations variationelles elliptiques,” J. Funct. Anal. 22 (1976), 130–185.

    Article  MATH  MathSciNet  Google Scholar 

  64. Qutrata J. V., „On the numerical solution of a class of Stackelberg problems,” Zeit. Oper. Res. 4 (1990), 255–278.

    Google Scholar 

  65. Outrata J. V., „On necessary optimality conditions for Stackelberg problems,” J. Optim. Theory Appl. 76 (1993), 305–320.

    Article  MATH  MathSciNet  Google Scholar 

  66. Robinson S. M., “Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms,” Mathematical Programming 7 (1974), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  67. Robinson S. M., „Stability theory for system of inequalities, Part II: Differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976), 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  68. Robinson S. M., “Strongly regular generalized equations,” Mathematics of Operatios Research 5 (1980), 43–62.

    Article  MATH  Google Scholar 

  69. Robinson S. M., Wets R. J.-B., „Stability in two-stage stochasic programming,” SIAM J. Control and Optimization 25 (1987), 1409–1416.

    Article  MATH  MathSciNet  Google Scholar 

  70. Römisch W., Schultz R., „Stability analysis for stochastic programs,” Annals of Operations Research 30 (1991), 241–266.

    Article  MATH  MathSciNet  Google Scholar 

  71. Römisch W., Schultz R., „Lipschitz stability for stochastic programs with complete recourse,” Deutsche Forschungsgemeinschaft, SPP „Anwendungsbezogene Optimierung und Steuerung,” Report No. 408, Berlin, 1992d. (to be published).

    Google Scholar 

  72. Shapiro A., „Asymptotic properties of statistical estimators in stochastic programming,” The Annals of Statistics 17 (1989), 841–858.

    Article  MATH  MathSciNet  Google Scholar 

  73. Shapiro A., „On differential stability in stochastic programming,” Math. Programming 47 (1991), 107–186.

    Article  Google Scholar 

  74. Shapiro A., „Asymptotic analysis of stochastic programs,” Annals of Oper. Res. 30 (1991), 169–186.

    Article  MATH  Google Scholar 

  75. Shapiro A., „Perturbation analysis of optimization in Banach spaces,” Numerical Funct. Anal. Optim. 13 (1992), 97–116.

    Article  MATH  Google Scholar 

  76. Shapiro A., „Asymptotic behavior of optimal solutions in stochastic programming,” to appear in Math. Oper. Res..

    Google Scholar 

  77. Shapiro A., „Sensitivity analysis of parametrized programs via generalized equations,” (to be published).

    Google Scholar 

  78. Shapiro A., Bonnans J. F., „Sensitivity analysis of parametrized programs under cone constraints,” SIAM J. Control and Optimization 30 (1992), 1409–1421.

    Article  MATH  MathSciNet  Google Scholar 

  79. Shimizu K., Ishizuka Y., „Optimality conditions and algorithms for parameter design problems with two-level structure,” IEEE Trans. Aut. Contr. AC-30 (1985), 986–993.

    Article  MathSciNet  Google Scholar 

  80. Sokolowski J., Zolesio J.-P., „Sensitivity Analysis in Shape Optimization,” Springer Series in Computational Mathematics, Vol 16, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  81. Tobin R. L., Friesz T. L., „Spacial competition facility location models: definition, formulation and solution approach,” Annals Oper. Res. 6 (1986), 49–74.

    Article  Google Scholar 

  82. Tröltzsch F., “Semdiscrete finite element approximation of parabolic boundary control problems-convergence of switching points,” in: Optimal Control of Partial Differential Equations II, Int. Ser. Num. Math., Vol. 78, Birkhäser, Basel, 1987.

    Google Scholar 

  83. Tröltzsch F., „Approximation of nonlinear parabolic boundary control problems by the Fourier method — convergence of optimal controls,” Optimization 22 (1991), 83–98.

    Article  MATH  MathSciNet  Google Scholar 

  84. Tröltzsch F., „Semidiscrete Ritz-galerkin approximation of nonlinear parabolic boundary control problems-strong convergence of optimal controls,” Deutsche Forschungsgemeinschaft, SPP „Anwendungsbezogene Optimierung und Steuerung,” Report No. 325, Augsburg, 1991.

    Google Scholar 

  85. Tröltzsch F., „On convergence of semidiscrete Ritz-Galerkin schemes applied to boundary control problems of parabolic equations with non-linear boundary conditions,” ZAMM 72 (1992), 291–301.

    Article  MATH  Google Scholar 

  86. Ursescu C., „Multifunctions with closed convex graph,” Czechoslovak Math. J. 25 (1975), 438–441.

    MathSciNet  Google Scholar 

  87. Yang B., „Some Numerical Methods for a Class of Nonlinear Optimal Control Problems,” (dissertation) Colorado State University, Fort Collins, Colorado, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Malanowski, K. (1994). Stability and sensitivity analysis of solutions to infinite-dimensional optimization problems. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035462

Download citation

  • DOI: https://doi.org/10.1007/BFb0035462

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics