Skip to main content

A new approach to formal language theory by kolmogorov complexity

Preliminary version

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 372))

Included in the following conference series:

  • 170 Accesses

Abstract

We introduce Kolmogorov complexity as a new technique in Formal Language Theory. We give an alternative for pumping lemma(s) and a new characterization for regular languages. For the separation of deterministic contextfree languages and contextfree languages no pumping lemmas or any other general method was known. We give a first general technique to separate these classes, and illustrate its use on four examples previously requiring labourous ad hoc methods. The approach is also successful at the high end of the Chomsky hierarchy since one can quantify nonrecursiveness in terms of Kolmogorov complexity. We also give a new proof, using Kolmogorov complexity, of Yao and Rivest's result that k + 1 heads are better than k heads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barzdin', Y.M., “Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set,” Soviet Math. Dokl. 9, pp. 1251–1254 (1968).

    Google Scholar 

  2. Chaitin, G.J., “On the length of programs for computing finite binary sequences: statistical considerations,” J. Assoc. Comp. Mach. 16, pp. 145–159 (1969).

    Google Scholar 

  3. Chaitin, G.J., “Information-theoretic characterizations of recursive infinite strings,” Theor. Comput. Sci. 2, pp. 45–48 (1976).

    Article  Google Scholar 

  4. Ehrenfeucht, A., R. Parikh, and G. Rozenberg, “Pumping lemmas for regular sets,” SIAM J. Computing 10, pp. 536–541 (1981).

    Article  Google Scholar 

  5. Floyd, R., “Review 14,” Comput. Rev. 9, p. 280 (1968).

    Google Scholar 

  6. Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979).

    Google Scholar 

  7. Ibarra, O.H. and C.E. Kim, “On 3-head versus 2 head finite automata,” Acta Informatica 4, pp. 193–200 (1975).

    Article  Google Scholar 

  8. Kolmogorov, A.N., “Three approaches to the quantitative definition of information,” Problems in Information Transmission 1(1), pp. 1–7 (1965).

    Google Scholar 

  9. Lewis, H.R. and C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall (1981).

    Google Scholar 

  10. Li, M. and P.M.B. Vitányi, “Tape versus queue and stacks: The lower bounds,” Information and Computation 78, pp. 56–85 (1988).

    Article  Google Scholar 

  11. Li, M. and P.M.B. Vitányi, “Two decades of applied Kolmogorov complexity: In memoriam A.N. Kolmogorov 1903–1987,” pp. 80–101 in Proc. 3rd IEEE Conference on Structure in Complexity Theory (1988).

    Google Scholar 

  12. Loveland, D.W., “A variant of the Kolmogorov concept of complexity,” Information and Control 15, pp. 510–526 (1969).

    Article  Google Scholar 

  13. Loveland, D.W., “On minimal-program complexity measures,” pp. 61–65 in Proceedings Assoc. Comp. Mach. Symposium on Theory of Computing (1969).

    Google Scholar 

  14. Maass, W., “Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines,” Trans. Amer. Math. Soc. 292, pp. 675–693 (1985).

    Google Scholar 

  15. Nelson, C.G., “One-way automata on bounded languages,” TR14-76, Harvard University (July 1976).

    Google Scholar 

  16. Paul, W., “Kolmogorov's complexity and lower bounds,” in Proc. 2nd International Conference on Fundamentals of Computation Theory, Lecture Notes in Computer Science, Vol. ??, Springer Verlag, Berlin (September 1979).

    Google Scholar 

  17. Paul, W.J., J.I. Seiferas, and J. Simon, “An information theoretic approach to time bounds for on-line computation,” J. Computer and System Sciences 23, pp. 108–126 (1981).

    Article  Google Scholar 

  18. Rosenberg, A., “On multihead finite automata,” IBM J. Res. Develop. 10, pp. 388–394 (1966).

    Google Scholar 

  19. Yao, A.C.-C. and R.L. Rivest, “k + 1 heads are better than k”, J. Assoc. Comput. Mach. 25, pp. 337–340 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giorgio Ausiello Mariangiola Dezani-Ciancaglini Simonetta Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Vitanyi, P.M.B. (1989). A new approach to formal language theory by kolmogorov complexity. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds) Automata, Languages and Programming. ICALP 1989. Lecture Notes in Computer Science, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035780

Download citation

  • DOI: https://doi.org/10.1007/BFb0035780

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51371-1

  • Online ISBN: 978-3-540-46201-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics