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A Compositional Semantics for Concurrent Prolog 

Joost N. Kok 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

Concurrent logic languages like Concurrent Prolog have mechanisms in common with imperative con­
current languages: concurrency, communication, synchronization and indeterminacy, finite and infinite 
behaviour. A goal statement can be considered as a network of processes which run in parallel and can 
communicate. For imperative concurrent languages a lot of research on the semantics has been done. In 
this paper we show that a model, which was originally designed for imperative languages, can be used to 
give a formal description of Concurrent Prolog. This model is compositional: for any two conjunctions C1, 

C2 the meaning of C1 A C2 can be obtained by applying a function to the meanings of C1 and C2. To 
be more specific: we shall employ a domain where some choices made during the computation are 
recorded in certain tree-like structures, and which allows for interleaving. We use tree like structures 
because it is not possible to use flat structures (like traces or sequences of substitutions). They do not con­
tain enough information to handle deadlock or infinite computations. Such phenomena require that we 
know at a certain moment in time all the alternatives. The domain is obtained as a solution of a domain 
equation. We apply metric topological tools to find a solution of the domain equation, and to define opera­
tions on elements of the domain. The semantic function maps goals, given a program P, to elements of the 
domain. This function is defined recursively. The model is able to handle both finite and infinite computa­
tions. 

1985 Mathematics Subject Classification: 68055, 68010. 
1987 Computing Reviews.Categories: D.1.3, D.3.1, F.1.2, F.3.2. 

Key words and phrases: denotational semantics, parallelism, concurrent logic languages, compositionality, 
metric topology. 

Note: This work is partially supported by the Netherlands Organization for Scientific Research (N.W.0.), 
grant 125-20-04. 

Note: this report is also published in the proceedings of the Symposium on Theoretical Aspects of Com­
puter Science (STAGS), Bordeaux, february 1988, in the Lecture Notes in Computer Science series of 
Springer Verlag. 

1. INTRODUCTION 

1 

Programming languages are sometimes divided in two groups: descriptive languages and constructive 
languages. Functional and logic languages are often classified as descriptive languages. Constructive 
languages are sometimes called imperative languages. Following [Gelemter 1984] algorithms tend to 
be described in descriptive languages and constructed in constructive ones. Both categories of 
languages have different styles of giving semantics to them. Often different domains and techniques 
are used. Descriptive languages have more natural mathematical domains. In our opinion, this divi­
sion has not a straight border line. Logic languages, for example, can be given different interpreta­
tions. We have a declarative, a procedural and a process interpretation: a clause a +- b1 /\ • • • /\ bn 
is read in a declarative interpretation as "a is true if all b; are true", and the procedural reading 
would be "to solve problem a, solve subproblems b;'', and in the process interpretation "a process a 
can replace itself by the system of processes that contains all b;''. In a process interpretation we can 
consider a unit goal to be a process, a conjunctive goal a network of processes, a variable shared by 
different processes in a goal a communication channel and a conditional clause defines a network 
reconfiguration. If we take the first interpretation we can say that a logic language is a declarative 
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language, with the second interpretation this is not so clear any more, and with the third interpreta­
tion one can argue that a logic language is a constructive language. If we look at the semantics given 
to logic languages (see for example [Lloyd 1984]) we see three kinds of semantics: declarative seman­
tics, procedural semantics, and perpetual processes. The declarative semantics is formulated with logi­
cal models, and it tries to characterize the desired model for a program with the help of fixed points. 
It corresponds to the declarative reading of logic programs. The procedural semantics speaks in terms 
of resolution, SLD trees and success sets. One can say that this corresponds to the procedural read­
ing of logic programs. Perpetual processes are completions of models: they are used because infinite 
behaviour can give rise to infinite data structures. The semantics is still formulated with models, 
which now can contain infinite ground terms, and with fixed point characterizations of them. This 
semantics does not totally correspond to the process interpretation. It is more an extension (taking 
possible infinite behaviour into account) to the declarative semantics. In this paper we try to give a 
process based semantics to a logic language. We use Concurrent Prolog because this languages has 
many features (maybe too many). We think this kind of semantics can also be used for other (con­
current) logic languages. 

Concurrent Prolog, as defined in [Shapiro 1983], has two major extensions to "normal" logic program­
ming languages. It is possible for two processes to synchronize. This is done by a special mechan­
ism: read only variables. Variables in programs can be marked read only with a question mark. 
There are some constraints on the unification of read only variables, and this has as effect that it is 
possible that at some moment in the computation the unification between two atoms (processes) can 
not succeed, and at some later stage they can unify because (at least) one of them has communicated 
with another process. As second extension Concurrent Prolog has a mechanism to control the non­
determinism: the commit operator. If execution comes to a point where it has to execute a commit 
operator, a choice can be made. Some alternative processes can be killed and it can be decided that 
the body of the clause will· be executed. Such a choice can not be undone. A comparison can be 
made with the cut operator of Prolog. 

There are some problems with the definition of Concurrent Prolog given in [Shapiro 1983]. They were 
pointed out in [Saraswat 1986]. In order to overcome these problems, Saraswat defines a family of 
languages which he ciills Concurrent Prolog. Each member of this family has a specific set of features. 
For example, he proposes a new kind of annotation (the wait annotation) to be used instead of the 
read only annotation. Also a new commit operator is introduced: besides the don't care commit he 
uses the don't know commit. In this paper we take the CP language which has both commits and the 
wait only annotation as a starting point. In [Saraswat 1987] an operational semantics, based on tran­
sition systems, is given. This semantics, however, is not compositional. 

For a number constructive languages, like CSP or ADA, process based models have been developed. 
We try here to adapt these semantic techniques. We will use a process based semantics based on 
techniques which were first described in [de Bakker & Zucker 1982]. The processes described in [de 
Bakker & Zucker 1982] (for a language containing assignment and a merge operator) are state 
transforming processes. A state is used to record the values of the variables. Our processes are a 
variant of these processes: instead of using state transforming processes, we use substitution 
transforming processes. 

We will try to describe the main ideas behind our model. The semantic model is based on substitu­
tion transforming functions. The execution of an atom a can be considered as a state transforming 
function: given a substitution 8, we try to resolve O(a), and if this succeeds, an answer substitution ff 
results. We require that our semantic function is compositional. The semantic function assigns to 
each conjunct, given a Concurrent Prolog program P, an element of the semantic domain. Composi­
tionality implies that the meaning of the conjunct a 1 /\ a2 should be a function of the semantic 
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meanings of a 1 and a2• This requirement complicates our domain. The execution of a conjunct 
a 1 /\ a2 is done by executing a 1 and a2 in parallel. The execution of a 1 can influence the execution 
of a2 and vice versa. We have to use a more complex semantic domain than just state transforming 
functions: elements of the domain should allow for interleaving of other elements. Concurrent Prolog 
allows processes to synchronize: as indicated above a process can be suspended till another process 
reaches a certain point in its execution. This has implications if we want to model deadlock (a process 
fails and it has no alternatives left nor it is suspended) or infinite behaviour. If we have two alterna­
tive processes, from which the first one fails and the second delivers a substitution, the result will be 
the substitution. If there is a choice between failure and infinite behaviour, we are forced to choose 
infinite behaviour. To model this correctly, we have to record information about at the timing of cer­
tain choices during a computation. Our processes are called resumptions: mathematical structures 
which allow for interleaving and in which timing of choices can be recorded. They can be infinite 
structures, and are defined with a recursive equation. We use metric topological tools to show that 
they exist and also to define operations on them. For example, the operator merge (shuffle) on 
resumptions, which is the semantic counterpart of /\, is defined as a fixed point of a higher order 
function. This higher order function is contracting on a complete metric space, and hence, by 
Banach's fixed point theorem, has a unique fixed point. 

The semantic function (which assigns processes to a goal, given a Concurrent Prolog program) is 
defined as the unique fixed point of a higher order function. With an abstraction operator we can 
derive from our compositional semantics a non compositional semantics. 

The outline of the rest of the paper is as follows: in section 2 we introduce the syntax of Concurrent 
Prolog, section 3 describes the informal semantics, in section 4 the processes (resumptions) and some 
operations on them are given, in section 5 we define the semantic functions, section 6 gives the con­
clusion and in section 7 we ·have the references. We also provide an appendix with the (metric topo­
logical) mathematical preliminaries. 

2. INTRODUCTION TO CONCURRENT PROLOG 

2.1 Syntax of Concurrent Prolog 
In this subsection we introduce the syntax of Concurrent Prolog. Let the following sets be given: 

Cons = { c,d, ... } of constants, 

Var = {u,v,w, ... } of variables, 

Fune = {f,g, . . . } of functions. 

Each function has an arity n ;;;;;. 1. There is a special function ! of arity 1. This functor is called the 
wait functor. We construct the set of terms: 

Term = {s,t, ... } of terms, 

with the help of a BNF grammar: 

t : : = c I v I f (t 1 , • • • , tn) : n ;;;a. I /\ f n - adic. 

We also define the set Term! C Term to be the least set such that 
• { ! (t) : no ! inside t } C Term! 
• { t : no ! inside t } C Term! 
• if t i. ... , tn E Term! and if at least one of them has as principal functor ! we have that, for any 
n-adic functionfthat !(f(t 1, ••• ,tn))ETermi. 

Motivation for this definition can be found in [Saraswat 1986]. 
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Let also be given a set 

Pred = { Q, . . . } of predicates. 

The set 

Atom = { a,b, ... } of atoms 

is given by 

The set 

Con} = { C, . . . } of conjunctions 

is the set of conjunctions of one or more atoms in which no i appear. The set 

Clause= {a~C 1 fC2 : a E Atom A Ci.C2 E Con} A fE{j ,&}} U 

{a~C 1 f: a E Atom A C 1 E Con} A fE{ I,&}} U 

{a~fC2: a E Atom A C2 E Conj A fE{I,&}} U 

{a~f: a E Atom A fE{I,&}} 

is the set of clauses. The bar "I" in a clause is called the don't care commit operator and & is called 
the don't know commit operator. The conjunct before a commit operator is called the guard of a 
clause and the conjunct after the commit operator is called the body of the clause. A Concurrent 
Prolog program is a finite set of clauses: the set 

Prog = { P, . . . } of programs 

is defined by Prog = '?Pfiniie(Clause), where 'ff.finite(-) denotes finite subsets of(·). 

2.2 Substitutions 
In this subsection we introduce substitutions. Let o,O E Subst = Var ~ Term be substitutions. The 
substjtution id is the identity substitution. We can extend a substitution 0 : Var ~ Term to a func­
tion 0 : Term ~ Term by 

A A A A A 

O(c) = c, O(v) = O(v), O(j(t1, ... ,tn)) = f(O(t1), ... ,O(tn)) 

and to a function iJ : Atom ~ Atom by 

fJ(P(ti, ... ,tn)) = P(O(t1), ... ,O(tn)) 

and to a function 0 : Con j ~ Con j by 

O(a1 A · · · A an) = fJ(a1) A 

and to a function 0 : Prog ~ Prog by 

O(P) = U { ( fJ(a) ~ O(C1) I O(C2)): (a ~ C1 I C2) E P } 

Define the composition of substitutions by 
A A 

01 °02 = AV . 01 (02(v )). 
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3. INFORMAL INTRODUCTION TO THE SEMANTICS OF CONCURRENT PROLOG 

First we look at the unification of terms. By the syntactic restriction ! functions only appear in heads 
of clauses. Therefore we have only to consider terms t 1,t2 with t 1 ETermi and t2 which does not con­
tain ! functions. The unification is an extension to normal unification. A term !(t) will suspend 
when unifying against a variable. It waits till the variable becomes instantiated to a term which is 
either a constant or a term with a functor. Then it tries to unify the term with the instantiation of the 
variable. The arguments of a compound term are unified .in parallel. A formal definition of this 
unification is given in [Saraswat 1986]. For the understanding of the rest of the paper, it suffices to 
remember that there are three possibilities for unification: success, failure and suspension. In other 
words, the ! annotation is used to restrict the goals for which a clause is applicable by specifying 
which terms in the goal need to be instantiated. 

Next we take look at the execution of a Concurrent Prolog program. We start with a goal 
a 1 /\ • • • /\an. With each atom a;, i = 1, ... ,n, a process is associated. Each process tries to reduce 
itself to other processes. A process a can reduce itself finding a clause whose head a unifies with a 
and whose guard system C 1, if present, terminates following that unification. The computation gives 
rise to a hierarchy of systems of processes. Each process may invoke several guard systems, in an 
attempt to find a reducing clause, and the computation of these guard systems in turn may evoke 
other systems. The communication between these systems is governed by the commitment mechan­
ism. If a guard system terminates, it can commit. This means that the bindings are communicated to 
all other systems. If such a binding is inconsistent with a binding in another system, this system fails. 
Moreover, the body C2, if present, of the chosen clause replaces a. If no body is present, we have ter­
mination. The difference between the two commits is that for the don't care commit alternatives are 
killed, and for the don't know commit they are also searched in parallel. The system terminates when 
all processes are terminated.· Note that a process can terminate only when there are clauses in the pro­
gram with an empty body. 

4. RESUMPTIONS 

First we present an intuitive introduction of the notion of resumption. We use the terminology of 
processes p,q, ... and process domains Process, .... We emphasize that we are concerned here with 
semantics rather than with syntax: processes are elements of mathematical structures rather than 
(pieces of) program texts. Process domains are obtained as solutions of domain equations. We let 
A, B, C, ... stand for arbitrary (given) sets (which do not interact with the process domains to be 
constructed.) A very simple equation is 

Process = A U (A X Process) (4.1) 

We can read this equation as follows: a process is either an atomic action, or it is a pair <a,q> 
where a is the first action taken, and q is the resumption, describing the rest of p's actions. Clearly, 
(4.1) has as solution either the set of all finite sequences <a1>a2, ••• ,an>, n;;;i=O, or these and, in 
addition, all infinite sequences <ai,a2 , ••• ,an, ... >. We next consider 

Process = A-7(B U (CXProcess)) (4.2) 

This is already a much more interesting equation: each process p is a function which, when supplied 
with an argument a, yields as outcome either a pair p(a) = <c,p'> or an action b. We see that p 
maps a to c orb, and in the first case at the same time turning itself into the resumption p'. We can 
say that p determines its first step b or c and resumption p' on the basis of a. The following equation 
we consider is 

Process = A-7'?Pcomp(B U (CXProcess)) (4.3) 
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where <!Pcomp(.) stands for the set of all compact nonempty subsets of(.). Now, if we feed a process p 
with an a EA, a whole set X of possible actions b and pairs <c,q> results, among which the pro­
cess can choose freely. For reasons of cardinality, (4.3) has no solution when we take all (rather than 
all compact) subsets of(.) It will turn out that (4.3) is the right type of domain equation for our pur­
poses. We shall specialize A to Subst and B to 

Subst~1 =deJ Subst"' U Subst+ U Subst 0 

• {8}, 
the set of sequences of substitutions which can end in 8 (deadlock). The set Subst • is the set of finite 
sequences, Subst"' is the set of infinite sequences, Subst 00 is the set of finite and infinite sequences, 
Subst + is the set of finite sequences of length greater than 0 of substitutions. We shall specialize C 
to Subst + . In this way we obtain 

Process = Subst~ <!Pcomp(Substf U (Subst+ XProcess)) (4.4) 
Thus, each process p when supplied with a substitution o as an argument yields a set. This set can 
contain pairs of the form <x,p'> or sequences of substitutions y which can end in {8}. An impor­
tant advantage of processes as in ( 4.4) is that they allow a natural definition of their merge which is a 
quite familiar operator in concurrency semantics. 

We show how to construct a process domain that satisfies equation (4.4). Define metric spaces M;, 
i E N, as follows: 

M 1 = Subst ~ 6.l'comp(SubstU) 

Mn+l = Subst ~ <!Pcomp(Subst~1 U (Subst+ XMn)) 

where metrics dn, n ;;;;.. I are defined as follows. Letyl>y2 E Substf. Define 

-{2-;-max{n:y,[n]=y,[n]} ify1 =f=.y2 
ds1(y1>y2) - 0 if y1 = Y2 

where y [n] denotes the prefix of length n of y, and let dH be the Hausdorff distance on <!Pcomp(SubstU) 
generated by ds1• Define 

d1(p1>p2) = supa E SubstdH(p1(0),p2(0)). 

Define a metric on Subs~1 U Subst + X Mn as follows: 

and let 

d{Y1>Yi) = ds1{Yi.y2) 

{

dst(y J ,y2) if YI =fa Y2 
d(<Y1>PI >,y2) = 2-tength(,y1) if YI = Y

2 

{

ds1{Y1,y2) if YI =fa Y2 
d(y1><y2,p2>) = 2-tength(,y 1) if yi = Y

2 

{

dshi.Y2) ify1 =f=.y2 
d(<y1>p1>,<y2,p2>) = 2-tength(,y1). dn(pi.p

2
) ifyi = Y2 
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dn+1(p1>p2) = supa e Subs1dH(p1(a),p2(a)) 

where dH is the Hausdorff distance generated by d. Remark that for each Mn, Mm, m';ii!:n, there exist 
an isometric embedding inm : Mn ~Mm. We define a metric on U{Mn : n';ii!:l }. Take any p 1 and 
P2· Suppose PI E Mn and p2 E Mm with m';iil:n. Define d(pi,p2) = dm(inm(p1),p2). If m<n change 
the roles of p 1 and p2• Now if we define 

Process = U{Mn : n';ii!:l } 

where the bar denotes the completion, then it is possible to prove that the domain equation ( 4.4) 
holds for this domain. The proof is an adaptation of the proofs in [de Bakker & Zucker 1982] or in 
[America & Rutten 1987]. For the role of the compactness consult [de Bakker & Zucker 1983]. 

The next step is the definition of some operations. Some operations are defined as fixed points of a 
higher order function. The main advantage of such kind of definitions is that we do not have to con­
sider first the finite case and then define the infinite case with a limit construction. First we define the 
merge operator II to be the fixed point of 

Fu : (Process X Process~ Process)~ (Process X Process~ Process) 

F11(</>){pi,p2)(a) = { <y,p2> : y E p1(a) /\ y E Subst+ } U 

LEMMA (4.6) 
The function F 11 is contractive 

PROOF 

{y :yep1(a) Ay E Subst* · {8} U Subst"'} U 

{ <y,</>(p,p2)> : <y,p> E p1(a)} U 

{ <y,p1 > : y E p2(a)A y E Subst+ } U 

{y :yEp2(a) Ay E Subst*·{8} U Subst"'} U 

{ <y,</>(pi,p)> : <y,p> E p2(a)} 

Easily seen by the following argument: each "recursive" appearance of </> is guarded by a sequence of 
substitutions and by the definition of the metric get a factor smaller than or equal to ~. 

0 

Informally, when we take the merge of two processesp 1 andp2 we do first a step fromp 1 or fromp 2 

and then we continue with the merge of what is left. Note that the merge is not a fair merge. If we 
want to have AND fairness, we have to extend our model along the lines of [de Bakker & Zucker 
1983]. 

The function trace flattens the tree structure to a set of words: it is the fixed point of 

F1race : (Process ~ (Subst ~ <?Ycomp(Subst~1 ))) ~(Process ~ (Subst ~ <?Ycomp(Substf ))) 

F'irace(</>)(p)(a) = {y :y Ep(a) /\y E Substf} U 

U {y · ((c/>(ji))(/ast(y))): <y,p> E p(a)} 

where the function last is only defined on sequences in Subst +, and delivers the last element of such a 
sequence. 

LEMMA (4.7) 



8 

The function F'rrace is contractive 

REMARK : In [de Bakker et al 1984] it is shown that if we take closed subsets instead of compact sub­
sets in our processes, the resulting trace sets are not necessarily closed. However, if we take compact 
sets, the resulting trace sets are compact. 

The function restr models that if there is a choice between deadlock and other behaviour, that other 
behaviour is chosen. It is the fixed point of 

Frestr : (Process~Process )~(Process~Process) 

is given by 

f p(o) if p(o)c;;;;Subst* ·{8} 
Fres1r(<f>)(p)(o) = l(p(o)nSubst 00 ) U {(y,<f>(q)): (y,q)Ep(o)} otherwise 

LEMMA (4.8) 
The function Frestr is contractive 

The function 

©:Substjf XProcess~lfl'comp(Substa U Subst+ XProcess) 

is given by 

©(y,p)= {y} n(Subst"' USubst* ·{8}) U ({y} nSubst+ )X {p2}. 
The function 

is given by 

E9 : Substjf XProcess~lfl'comp(Substf U (Subst+ XProcess)) 

El1(y,p)={y}n(Subst"' U Subst*·{8}) U 

{(y:Yi.P1) : y ESubst + /\ (yi.p 1)Ep(last(y))} U 

{y:Y 1 : {y}ESubst+ /\y1 Ep(last(y))}. 

5. COMPOSITIONAL SEMANTICS 

Before we come to the definition of the semantic function we need some more definitions. In Con­
current Prolog two or more atoms can be developed in parallel. We have to do some renaming of 
variables, because otherwise it would be possible to get undesirable bindings. 

DEFINITION (5.1) 
Let Seq = N* be the set of finite words of integers and let r be a typical element of this set. Let · 
denote concatenation of these words, and let t: be the empty word. 

We suppose from now on that we can divide the set of variables in the following way 

Var = LJ { Varr : r E Seq } 

such that they are pairwise disjoint: 

'r/r,r' E Seq : r =I= r' [Var, n Var,· = 0 ], 

and that there exist injections, for each r E Seq, 
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'1', : VarE ~ Var,. 

Let Term,, Clause,, Conj, and Prog, be those subsets of Term, Clause, Conj and Prog in which all 
variables are taken from Var,. In the same way as we have done for substitutions (see section 2.2) we 
define 

'1' r : Prog E ~ Prog,. 

Now we are prepared to give the definition of the semantic function. First we try to give some intui­
tion. The size of the "steps" in our process will be the computation till a commit operator. The com­
mitment is the place where choices are made definite. Given a substitution o and an atom it tries to 
find a clause a~ · · · in the /program such that unifY (a, iJ( C)) is defined. Recall that the dot on o 
denotes the generalization to-atoms (see section 2.2). If no such clause exist, we have failure and the 
set {8} is delivered. Vfe have to be careful: we do not look for a candidate clause a~ · · · in P, but 
in a syntactic variant '1',(P), where all variables are taken from Var,. 

Suppose we can find a clause in '1',(P) of the form a ~ C 1 I C2, such that a unifies with iJ(C). We 
try to resolve the guard C 1 • This done recursively in our definition: we assume that we "know" which 
process is associated with C i. given P and r· l (the concatenation with I is to avoid clashes with vari­
ables). There is no interaction with other processes during the resolving of the guard, so we can 
abstract from the tree like structure by applying the operators trace and restr, and only consider what 
the possible substitutions are that resolve the guard. We also signify an infinite behaviour. If the set 
of sequences substitutions is non empty, we can take an element from it ("commit") and continue 
with the execution of the body C2 , given P and r·2. 

When we have as goal a conjunct, we put them in parallel in a safe way by our mechanism of renam­
ing. The parallelism is modeled by interleaving. It is not difficult to see that this yields the same 
results as "true" concurrency. 

The semantic function CS will be the (unique) fixed point of 

Fcs : (Conj X ProgE X Seq ~Process) ~(Conj X ProgE X Seq ~Process). 

First we consider the case that the conjunct is an atom: 

Fcs(<f>)(a,P,r)(o)= { 8} 

if there is no clause in '1',(P) whose head unifies with iJ(a), and if there exist such a clause we define 

Fcs(<f>)(a,P,r)(o)= 

A 

{(O 0 o · y) 0 <f>(C2,P,r·2): 

3(a'~C1(C2) E '1',(P)[(J = unifY(a',iJ(a)) /\ 
A 

y E trace(restr(<f>(Ci.P,r-1)))(0 ° o) /\ 

(=I ~ o = © /\ (=& ~ o = E9 n u 

A 

{(O 0 o) 0 <f>(C2,P,r·2) : 

3(a'~(C2) E '1',(P) [iJ = unifY(a',il(a)) /\ 

(=I ~ o = © /\ f=& ~ o = E9 n u 
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GHC, and Parlog. In [Levi & Palamidessi 1987] a language is defined which contains all the 
languages mentioned above as subset. It would be interesting to see whether our techniques can be 
used to assign a process based semantics to this language. 

An other issue for further research is the fully abstractness of the semantics. We have added extra 
information to make our semantics compositional. The ·question arises: did we add not too much 
information? We expect that we have to remove some of the information that is contained in the tree 
like structures to make our semantics fully abstract. Interesting work on the comparison between 
operational and denotational semantics can be found in [Debray & Mishra 1987] and in [van Veen & 
de Vink 1985]. Both consider semantics for PROLOG. Due to the deterministic nature of this 
language the compositional denotational semantics equals the operational semantics. 
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APPENDIX: MATHEMATICAL PRELIMINARIES 

In this appendix we collect some definitions and properties concerning metric spaces in order to 
refresh the reader's memory or to introduce him to this subject. 

DEFINITION A. I (Metric space) 
A metric space is a pair (M,d) with Ma non-empty set and d a mapping d:MXM-+[0,1] (a metric or 
distance), which satisfies the following properties: 
(a) 'v'x,yEM[d(x,y)=O ~ x =y] 
(b) 'v'x,yEM[d(x,y)=d(y,x)] 
(c) 'v'x,y,zEM[d(x,y) ~ d(x,z) + d(z,y)]. 

We consider only metric spaces with bounded diameter: the distance between two points never 
exceeds 1. 

DEFINITION A.2 

Let (M,d) be a metric space, let (xi)i be a sequence in M. 
(a) We say that (x/)i is a Cauchy sequence whenever we have: 

'v'E:>O 3NEN 'v'n,m>N [d(xn,Xm)<E:]. 
(b) Let xEM. We say that (x;)i converges to x and call x the limit of (xi)i whenever we have: 

'v'E:>O 3N EN 'v'n > N [d(X,Xn)<E:]. 
Such a sequence we call convergent. Notation: 1imi__.00 x; =x. 

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele­
ment of M; 

DEFINITION A.3 
Let (Mi,d1),(M2,d2) be metric spaces. 
(a) We say that (Mi.d1) and (M2,d2) are isometric if there exists a bijection/:M1-+M2 such that: 

'v'x,yEM1 [d2(f(x),/(y))=d1(x,y)]. When f is not a bijection (but only an injection), we call it 
an isometric embedding. 

(b) Let f:M 1-+M 2 be a function. We call f continuous whenever for each sequence (xi ); with limit x 
in M1 we have that limi__.00/(xJ=/(x). 

(c) Let A;;o.O. With M 1-+A M2 we denote the set of functions /from M 1 to M2 that satisfy the fol­
lowing property: 
'v'x,yEM1 [d2(f (x).JV;))~A ·d1(x,y)]. 
Functions f in M 1-+ M 2 we call non-distance-increasing (NDI), functions f in M 1-+£ M 2 with 
O~E:< I we call contracting. 

THEOREM A.4 (Banach's fixed-point theorem) 
Let (M,d) be a complete metric space and f :M-+M a contracting function. Then there exists an x EM 
such that the following holds: 
(1) f(x)=x (x is afixedpoint of j), 
(2) 'v'yEM [f(y)=y ~ y =x](x is unique), 
(3) 'v'xoEM (litnn__.00J<n\xo)=x1 where r+ 1(xo)=/(fn(xo)) and/0(xo)=xo. 

DEFINITION A.5 (Closed and compact subsets) 
(a) A subset X of a complete metric space (M,d) is called closed whenever each Cauchy sequence in 

X converges to an element of X. 
(b) A subset X of a complete metric space (M,d) is called compact whenever ep sequence in X has 

a converging subsequence which converges to an element of X. 
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REMARK: 
(a) The definition of compactness given here is in fact the definition of sequential compactness. In a 

metric space this is equivalent to compactness. 
(b) In a metric space every compact set is closed. 

DEFINITION A.6 
Let (M,d),(Mi.d1),(M2,d2) be metric spaces. 
(a) With M 1_,,M2 we denote the set of all continuous functions from M 1 to M2. We define a 

metric dF on M 1_,,M2 as follows. For every Ji.Ii EM 1 ~M2 

dF(/1,fi)=supxeM, {d2(/1(x),fi(x))}. 

(b) Let <fPc1oseiM)=def{X<;;;,M: Xis closed and non-empty} and let '!Pcomp(M)=def{X<;;;,M: Xis com­
pact and non-empty}. We define a metric du both on <fPc1oseiM) and <fPcomp(M), called the Haus­
dorff distance, as follows. For every X, Y E<fPc1oseiM) (or E<fPcomp(M)) 

du(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} }, 

where d(x,Z)=de/infzez{d(x,z)} for every Z <;;;,M, xEM. 
An equivalent definition would be to set Vr(X)={yEMj3xEX[d(x,y)<rJ} for r>O,XCM, 
and then to define 

du(X,Y) = inf{r>Oj XCVr(Y)/\ YCVr(X)}. 

PROPOSITION A. 7 
Let (M,d), (Mi.d1),(M2,d2), dF, du be as in definition A.6 and suppose that (M,d), (Mi.d1),(M2,d2) 
are complete. We have that 
(a) (M1_,,M2,dF), 
(b) (<fPc1osed(M),du) 
(c) (<fPcomp(M),du) 
are complete metric spaces. (Strictly speaking, for the completeness of M 1_,,Af2 we do not need the com­
pleteness of M1.) 

The proof of proposition A.7 (a) is straightforward because the distance between two points never 
exceeds l. Part (b) and (c) are more involved. They can be proved with the help of the following 
characterization of the completeness of (<fPc1osed(M),du). 

PROPOSITION A.8 
Let (<fPc1oseiM),du) be as in definition A.6. Let (X;); be a Cauchy sequence in '!Pc1oseiM). We have: 

lim;~ooXi = {lim;~00 x; : X;E.X;, (x;); a Cauchy sequence in M}. 

Proofs of proposition A.7(b) and A.8 can be found in (for instance) [Dugundji 1966] and [Engelk­
ing 1977]. The proofs are also repeated in [de Bakker & Zucker 1982]. 

THEOREM A.9 (Metric completion) 
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion of M) 
together with an isometric embedding i :M _,,M such that: 
(I) Mis complete 
(2) For every complete !!'etric space M' a!!_d isometric embedding j :M _,,M' there exists a unique 

isometric embedding j :M _,,M' such that j 0 i = j. 

PROOF 
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The space M is constructed by taking the set of all Cauchy sequences in M and dividing it out by the 
equivalence relation = defined by 

(Xn)n = (yn)n =def lim,, ..... ood(XmJn)=O. 

The metric de on M is defined by 

dc([(xn)k,[(yn)]=:) =def Iimn-+ood(xn,Jn) 

and the embedding i will map every x EM to the equivalence class of the sequence of which all ele­
ments are equal to x: 

i(x) = [(x)nk· 

It is easy to show that M and i satisfy the above properties. 

0 




