
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.N. Kok

?
A compositional semantics for concurrent prolog

Computer Science/Department of Software Technology Report CS-R8809 February

Bib!iothe!:k
Centrum voor Wi,;:,!,...irn}a oo lnformal:lca

Amsterdan>

The Centre for Mathematics ana Computer Science is a research institute of the Stichting
Mathematisch Centrum. which was founded on February 11 , 1946. as a nonprof1t institution aim­
ing at tne promotion of mathematics, computer science. and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

~q 1>t~.6 9 ·41,fo°.Jf 11. b°:)r S.'t

Copyright © Stichting Mathematisch Centrum, Amsterdam ,,

A Compositional Semantics for Concurrent Prolog

Joost N. Kok
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Concurrent logic languages like Concurrent Prolog have mechanisms in common with imperative con­
current languages: concurrency, communication, synchronization and indeterminacy, finite and infinite
behaviour. A goal statement can be considered as a network of processes which run in parallel and can
communicate. For imperative concurrent languages a lot of research on the semantics has been done. In
this paper we show that a model, which was originally designed for imperative languages, can be used to
give a formal description of Concurrent Prolog. This model is compositional: for any two conjunctions C1,

C2 the meaning of C1 A C2 can be obtained by applying a function to the meanings of C1 and C2. To
be more specific: we shall employ a domain where some choices made during the computation are
recorded in certain tree-like structures, and which allows for interleaving. We use tree like structures
because it is not possible to use flat structures (like traces or sequences of substitutions). They do not con­
tain enough information to handle deadlock or infinite computations. Such phenomena require that we
know at a certain moment in time all the alternatives. The domain is obtained as a solution of a domain
equation. We apply metric topological tools to find a solution of the domain equation, and to define opera­
tions on elements of the domain. The semantic function maps goals, given a program P, to elements of the
domain. This function is defined recursively. The model is able to handle both finite and infinite computa­
tions.

1985 Mathematics Subject Classification: 68055, 68010.
1987 Computing Reviews.Categories: D.1.3, D.3.1, F.1.2, F.3.2.

Key words and phrases: denotational semantics, parallelism, concurrent logic languages, compositionality,
metric topology.

Note: This work is partially supported by the Netherlands Organization for Scientific Research (N.W.0.),
grant 125-20-04.

Note: this report is also published in the proceedings of the Symposium on Theoretical Aspects of Com­
puter Science (STAGS), Bordeaux, february 1988, in the Lecture Notes in Computer Science series of
Springer Verlag.

1. INTRODUCTION

1

Programming languages are sometimes divided in two groups: descriptive languages and constructive
languages. Functional and logic languages are often classified as descriptive languages. Constructive
languages are sometimes called imperative languages. Following [Gelemter 1984] algorithms tend to
be described in descriptive languages and constructed in constructive ones. Both categories of
languages have different styles of giving semantics to them. Often different domains and techniques
are used. Descriptive languages have more natural mathematical domains. In our opinion, this divi­
sion has not a straight border line. Logic languages, for example, can be given different interpreta­
tions. We have a declarative, a procedural and a process interpretation: a clause a +- b1 /\ • • • /\ bn
is read in a declarative interpretation as "a is true if all b; are true", and the procedural reading
would be "to solve problem a, solve subproblems b;'', and in the process interpretation "a process a
can replace itself by the system of processes that contains all b;''. In a process interpretation we can
consider a unit goal to be a process, a conjunctive goal a network of processes, a variable shared by
different processes in a goal a communication channel and a conditional clause defines a network
reconfiguration. If we take the first interpretation we can say that a logic language is a declarative

Report CS-R8809
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

language, with the second interpretation this is not so clear any more, and with the third interpreta­
tion one can argue that a logic language is a constructive language. If we look at the semantics given
to logic languages (see for example [Lloyd 1984]) we see three kinds of semantics: declarative seman­
tics, procedural semantics, and perpetual processes. The declarative semantics is formulated with logi­
cal models, and it tries to characterize the desired model for a program with the help of fixed points.
It corresponds to the declarative reading of logic programs. The procedural semantics speaks in terms
of resolution, SLD trees and success sets. One can say that this corresponds to the procedural read­
ing of logic programs. Perpetual processes are completions of models: they are used because infinite
behaviour can give rise to infinite data structures. The semantics is still formulated with models,
which now can contain infinite ground terms, and with fixed point characterizations of them. This
semantics does not totally correspond to the process interpretation. It is more an extension (taking
possible infinite behaviour into account) to the declarative semantics. In this paper we try to give a
process based semantics to a logic language. We use Concurrent Prolog because this languages has
many features (maybe too many). We think this kind of semantics can also be used for other (con­
current) logic languages.

Concurrent Prolog, as defined in [Shapiro 1983], has two major extensions to "normal" logic program­
ming languages. It is possible for two processes to synchronize. This is done by a special mechan­
ism: read only variables. Variables in programs can be marked read only with a question mark.
There are some constraints on the unification of read only variables, and this has as effect that it is
possible that at some moment in the computation the unification between two atoms (processes) can
not succeed, and at some later stage they can unify because (at least) one of them has communicated
with another process. As second extension Concurrent Prolog has a mechanism to control the non­
determinism: the commit operator. If execution comes to a point where it has to execute a commit
operator, a choice can be made. Some alternative processes can be killed and it can be decided that
the body of the clause will· be executed. Such a choice can not be undone. A comparison can be
made with the cut operator of Prolog.

There are some problems with the definition of Concurrent Prolog given in [Shapiro 1983]. They were
pointed out in [Saraswat 1986]. In order to overcome these problems, Saraswat defines a family of
languages which he ciills Concurrent Prolog. Each member of this family has a specific set of features.
For example, he proposes a new kind of annotation (the wait annotation) to be used instead of the
read only annotation. Also a new commit operator is introduced: besides the don't care commit he
uses the don't know commit. In this paper we take the CP language which has both commits and the
wait only annotation as a starting point. In [Saraswat 1987] an operational semantics, based on tran­
sition systems, is given. This semantics, however, is not compositional.

For a number constructive languages, like CSP or ADA, process based models have been developed.
We try here to adapt these semantic techniques. We will use a process based semantics based on
techniques which were first described in [de Bakker & Zucker 1982]. The processes described in [de
Bakker & Zucker 1982] (for a language containing assignment and a merge operator) are state
transforming processes. A state is used to record the values of the variables. Our processes are a
variant of these processes: instead of using state transforming processes, we use substitution
transforming processes.

We will try to describe the main ideas behind our model. The semantic model is based on substitu­
tion transforming functions. The execution of an atom a can be considered as a state transforming
function: given a substitution 8, we try to resolve O(a), and if this succeeds, an answer substitution ff
results. We require that our semantic function is compositional. The semantic function assigns to
each conjunct, given a Concurrent Prolog program P, an element of the semantic domain. Composi­
tionality implies that the meaning of the conjunct a 1 /\ a2 should be a function of the semantic

3

meanings of a 1 and a2• This requirement complicates our domain. The execution of a conjunct
a 1 /\ a2 is done by executing a 1 and a2 in parallel. The execution of a 1 can influence the execution
of a2 and vice versa. We have to use a more complex semantic domain than just state transforming
functions: elements of the domain should allow for interleaving of other elements. Concurrent Prolog
allows processes to synchronize: as indicated above a process can be suspended till another process
reaches a certain point in its execution. This has implications if we want to model deadlock (a process
fails and it has no alternatives left nor it is suspended) or infinite behaviour. If we have two alterna­
tive processes, from which the first one fails and the second delivers a substitution, the result will be
the substitution. If there is a choice between failure and infinite behaviour, we are forced to choose
infinite behaviour. To model this correctly, we have to record information about at the timing of cer­
tain choices during a computation. Our processes are called resumptions: mathematical structures
which allow for interleaving and in which timing of choices can be recorded. They can be infinite
structures, and are defined with a recursive equation. We use metric topological tools to show that
they exist and also to define operations on them. For example, the operator merge (shuffle) on
resumptions, which is the semantic counterpart of /\, is defined as a fixed point of a higher order
function. This higher order function is contracting on a complete metric space, and hence, by
Banach's fixed point theorem, has a unique fixed point.

The semantic function (which assigns processes to a goal, given a Concurrent Prolog program) is
defined as the unique fixed point of a higher order function. With an abstraction operator we can
derive from our compositional semantics a non compositional semantics.

The outline of the rest of the paper is as follows: in section 2 we introduce the syntax of Concurrent
Prolog, section 3 describes the informal semantics, in section 4 the processes (resumptions) and some
operations on them are given, in section 5 we define the semantic functions, section 6 gives the con­
clusion and in section 7 we ·have the references. We also provide an appendix with the (metric topo­
logical) mathematical preliminaries.

2. INTRODUCTION TO CONCURRENT PROLOG

2.1 Syntax of Concurrent Prolog
In this subsection we introduce the syntax of Concurrent Prolog. Let the following sets be given:

Cons = { c,d, ... } of constants,

Var = {u,v,w, ... } of variables,

Fune = {f,g, . . . } of functions.

Each function has an arity n ;;;;;. 1. There is a special function ! of arity 1. This functor is called the
wait functor. We construct the set of terms:

Term = {s,t, ... } of terms,

with the help of a BNF grammar:

t : : = c I v I f (t 1 , • • • , tn) : n ;;;a. I /\ f n - adic.

We also define the set Term! C Term to be the least set such that
• { ! (t) : no ! inside t } C Term!
• { t : no ! inside t } C Term!
• if t i. ... , tn E Term! and if at least one of them has as principal functor ! we have that, for any
n-adic functionfthat !(f(t 1, ••• ,tn))ETermi.

Motivation for this definition can be found in [Saraswat 1986].

4

Let also be given a set

Pred = { Q, . . . } of predicates.

The set

Atom = { a,b, ... } of atoms

is given by

The set

Con} = { C, . . . } of conjunctions

is the set of conjunctions of one or more atoms in which no i appear. The set

Clause= {a~C 1 fC2 : a E Atom A Ci.C2 E Con} A fE{j ,&}} U

{a~C 1 f: a E Atom A C 1 E Con} A fE{ I,&}} U

{a~fC2: a E Atom A C2 E Conj A fE{I,&}} U

{a~f: a E Atom A fE{I,&}}

is the set of clauses. The bar "I" in a clause is called the don't care commit operator and & is called
the don't know commit operator. The conjunct before a commit operator is called the guard of a
clause and the conjunct after the commit operator is called the body of the clause. A Concurrent
Prolog program is a finite set of clauses: the set

Prog = { P, . . . } of programs

is defined by Prog = '?Pfiniie(Clause), where 'ff.finite(-) denotes finite subsets of(·).

2.2 Substitutions
In this subsection we introduce substitutions. Let o,O E Subst = Var ~ Term be substitutions. The
substjtution id is the identity substitution. We can extend a substitution 0 : Var ~ Term to a func­
tion 0 : Term ~ Term by

A A A A A

O(c) = c, O(v) = O(v), O(j(t1, ... ,tn)) = f(O(t1), ... ,O(tn))

and to a function iJ : Atom ~ Atom by

fJ(P(ti, ... ,tn)) = P(O(t1), ... ,O(tn))

and to a function 0 : Con j ~ Con j by

O(a1 A · · · A an) = fJ(a1) A

and to a function 0 : Prog ~ Prog by

O(P) = U { (fJ(a) ~ O(C1) I O(C2)): (a ~ C1 I C2) E P }

Define the composition of substitutions by
A A

01 °02 = AV . 01 (02(v)).

5

3. INFORMAL INTRODUCTION TO THE SEMANTICS OF CONCURRENT PROLOG

First we look at the unification of terms. By the syntactic restriction ! functions only appear in heads
of clauses. Therefore we have only to consider terms t 1,t2 with t 1 ETermi and t2 which does not con­
tain ! functions. The unification is an extension to normal unification. A term !(t) will suspend
when unifying against a variable. It waits till the variable becomes instantiated to a term which is
either a constant or a term with a functor. Then it tries to unify the term with the instantiation of the
variable. The arguments of a compound term are unified .in parallel. A formal definition of this
unification is given in [Saraswat 1986]. For the understanding of the rest of the paper, it suffices to
remember that there are three possibilities for unification: success, failure and suspension. In other
words, the ! annotation is used to restrict the goals for which a clause is applicable by specifying
which terms in the goal need to be instantiated.

Next we take look at the execution of a Concurrent Prolog program. We start with a goal
a 1 /\ • • • /\an. With each atom a;, i = 1, ... ,n, a process is associated. Each process tries to reduce
itself to other processes. A process a can reduce itself finding a clause whose head a unifies with a
and whose guard system C 1, if present, terminates following that unification. The computation gives
rise to a hierarchy of systems of processes. Each process may invoke several guard systems, in an
attempt to find a reducing clause, and the computation of these guard systems in turn may evoke
other systems. The communication between these systems is governed by the commitment mechan­
ism. If a guard system terminates, it can commit. This means that the bindings are communicated to
all other systems. If such a binding is inconsistent with a binding in another system, this system fails.
Moreover, the body C2, if present, of the chosen clause replaces a. If no body is present, we have ter­
mination. The difference between the two commits is that for the don't care commit alternatives are
killed, and for the don't know commit they are also searched in parallel. The system terminates when
all processes are terminated.· Note that a process can terminate only when there are clauses in the pro­
gram with an empty body.

4. RESUMPTIONS

First we present an intuitive introduction of the notion of resumption. We use the terminology of
processes p,q, ... and process domains Process, We emphasize that we are concerned here with
semantics rather than with syntax: processes are elements of mathematical structures rather than
(pieces of) program texts. Process domains are obtained as solutions of domain equations. We let
A, B, C, ... stand for arbitrary (given) sets (which do not interact with the process domains to be
constructed.) A very simple equation is

Process = A U (A X Process) (4.1)

We can read this equation as follows: a process is either an atomic action, or it is a pair <a,q>
where a is the first action taken, and q is the resumption, describing the rest of p's actions. Clearly,
(4.1) has as solution either the set of all finite sequences <a1>a2, ••• ,an>, n;;;i=O, or these and, in
addition, all infinite sequences <ai,a2 , ••• ,an, ... >. We next consider

Process = A-7(B U (CXProcess)) (4.2)

This is already a much more interesting equation: each process p is a function which, when supplied
with an argument a, yields as outcome either a pair p(a) = <c,p'> or an action b. We see that p
maps a to c orb, and in the first case at the same time turning itself into the resumption p'. We can
say that p determines its first step b or c and resumption p' on the basis of a. The following equation
we consider is

Process = A-7'?Pcomp(B U (CXProcess)) (4.3)

6

where <!Pcomp(.) stands for the set of all compact nonempty subsets of(.). Now, if we feed a process p
with an a EA, a whole set X of possible actions b and pairs <c,q> results, among which the pro­
cess can choose freely. For reasons of cardinality, (4.3) has no solution when we take all (rather than
all compact) subsets of(.) It will turn out that (4.3) is the right type of domain equation for our pur­
poses. We shall specialize A to Subst and B to

Subst~1 =deJ Subst"' U Subst+ U Subst 0

• {8},
the set of sequences of substitutions which can end in 8 (deadlock). The set Subst • is the set of finite
sequences, Subst"' is the set of infinite sequences, Subst 00 is the set of finite and infinite sequences,
Subst + is the set of finite sequences of length greater than 0 of substitutions. We shall specialize C
to Subst + . In this way we obtain

Process = Subst~ <!Pcomp(Substf U (Subst+ XProcess)) (4.4)
Thus, each process p when supplied with a substitution o as an argument yields a set. This set can
contain pairs of the form <x,p'> or sequences of substitutions y which can end in {8}. An impor­
tant advantage of processes as in (4.4) is that they allow a natural definition of their merge which is a
quite familiar operator in concurrency semantics.

We show how to construct a process domain that satisfies equation (4.4). Define metric spaces M;,
i E N, as follows:

M 1 = Subst ~ 6.l'comp(SubstU)

Mn+l = Subst ~ <!Pcomp(Subst~1 U (Subst+ XMn))

where metrics dn, n ;;;;.. I are defined as follows. Letyl>y2 E Substf. Define

-{2-;-max{n:y,[n]=y,[n]} ify1 =f=.y2
ds1(y1>y2) - 0 if y1 = Y2

where y [n] denotes the prefix of length n of y, and let dH be the Hausdorff distance on <!Pcomp(SubstU)
generated by ds1• Define

d1(p1>p2) = supa E SubstdH(p1(0),p2(0)).

Define a metric on Subs~1 U Subst + X Mn as follows:

and let

d{Y1>Yi) = ds1{Yi.y2)

{

dst(y J ,y2) if YI =fa Y2
d(<Y1>PI >,y2) = 2-tength(,y1) if YI = Y

2

{

ds1{Y1,y2) if YI =fa Y2
d(y1><y2,p2>) = 2-tength(,y 1) if yi = Y

2

{

dshi.Y2) ify1 =f=.y2
d(<y1>p1>,<y2,p2>) = 2-tength(,y1). dn(pi.p

2
) ifyi = Y2

7

dn+1(p1>p2) = supa e Subs1dH(p1(a),p2(a))

where dH is the Hausdorff distance generated by d. Remark that for each Mn, Mm, m';ii!:n, there exist
an isometric embedding inm : Mn ~Mm. We define a metric on U{Mn : n';ii!:l }. Take any p 1 and
P2· Suppose PI E Mn and p2 E Mm with m';iil:n. Define d(pi,p2) = dm(inm(p1),p2). If m<n change
the roles of p 1 and p2• Now if we define

Process = U{Mn : n';ii!:l }

where the bar denotes the completion, then it is possible to prove that the domain equation (4.4)
holds for this domain. The proof is an adaptation of the proofs in [de Bakker & Zucker 1982] or in
[America & Rutten 1987]. For the role of the compactness consult [de Bakker & Zucker 1983].

The next step is the definition of some operations. Some operations are defined as fixed points of a
higher order function. The main advantage of such kind of definitions is that we do not have to con­
sider first the finite case and then define the infinite case with a limit construction. First we define the
merge operator II to be the fixed point of

Fu : (Process X Process~ Process)~ (Process X Process~ Process)

F11(</>){pi,p2)(a) = { <y,p2> : y E p1(a) /\ y E Subst+ } U

LEMMA (4.6)
The function F 11 is contractive

PROOF

{y :yep1(a) Ay E Subst* · {8} U Subst"'} U

{ <y,</>(p,p2)> : <y,p> E p1(a)} U

{ <y,p1 > : y E p2(a)A y E Subst+ } U

{y :yEp2(a) Ay E Subst*·{8} U Subst"'} U

{ <y,</>(pi,p)> : <y,p> E p2(a)}

Easily seen by the following argument: each "recursive" appearance of </> is guarded by a sequence of
substitutions and by the definition of the metric get a factor smaller than or equal to ~.

0

Informally, when we take the merge of two processesp 1 andp2 we do first a step fromp 1 or fromp 2

and then we continue with the merge of what is left. Note that the merge is not a fair merge. If we
want to have AND fairness, we have to extend our model along the lines of [de Bakker & Zucker
1983].

The function trace flattens the tree structure to a set of words: it is the fixed point of

F1race : (Process ~ (Subst ~ <?Ycomp(Subst~1))) ~(Process ~ (Subst ~ <?Ycomp(Substf)))

F'irace(</>)(p)(a) = {y :y Ep(a) /\y E Substf} U

U {y · ((c/>(ji))(/ast(y))): <y,p> E p(a)}

where the function last is only defined on sequences in Subst +, and delivers the last element of such a
sequence.

LEMMA (4.7)

8

The function F'rrace is contractive

REMARK : In [de Bakker et al 1984] it is shown that if we take closed subsets instead of compact sub­
sets in our processes, the resulting trace sets are not necessarily closed. However, if we take compact
sets, the resulting trace sets are compact.

The function restr models that if there is a choice between deadlock and other behaviour, that other
behaviour is chosen. It is the fixed point of

Frestr : (Process~Process)~(Process~Process)

is given by

f p(o) if p(o)c;;;;Subst* ·{8}
Fres1r(<f>)(p)(o) = l(p(o)nSubst 00) U {(y,<f>(q)): (y,q)Ep(o)} otherwise

LEMMA (4.8)
The function Frestr is contractive

The function

©:Substjf XProcess~lfl'comp(Substa U Subst+ XProcess)

is given by

©(y,p)= {y} n(Subst"' USubst* ·{8}) U ({y} nSubst+)X {p2}.
The function

is given by

E9 : Substjf XProcess~lfl'comp(Substf U (Subst+ XProcess))

El1(y,p)={y}n(Subst"' U Subst*·{8}) U

{(y:Yi.P1) : y ESubst + /\ (yi.p 1)Ep(last(y))} U

{y:Y 1 : {y}ESubst+ /\y1 Ep(last(y))}.

5. COMPOSITIONAL SEMANTICS

Before we come to the definition of the semantic function we need some more definitions. In Con­
current Prolog two or more atoms can be developed in parallel. We have to do some renaming of
variables, because otherwise it would be possible to get undesirable bindings.

DEFINITION (5.1)
Let Seq = N* be the set of finite words of integers and let r be a typical element of this set. Let ·
denote concatenation of these words, and let t: be the empty word.

We suppose from now on that we can divide the set of variables in the following way

Var = LJ { Varr : r E Seq }

such that they are pairwise disjoint:

'r/r,r' E Seq : r =I= r' [Var, n Var,· = 0],

and that there exist injections, for each r E Seq,

9

'1', : VarE ~ Var,.

Let Term,, Clause,, Conj, and Prog, be those subsets of Term, Clause, Conj and Prog in which all
variables are taken from Var,. In the same way as we have done for substitutions (see section 2.2) we
define

'1' r : Prog E ~ Prog,.

Now we are prepared to give the definition of the semantic function. First we try to give some intui­
tion. The size of the "steps" in our process will be the computation till a commit operator. The com­
mitment is the place where choices are made definite. Given a substitution o and an atom it tries to
find a clause a~ · · · in the /program such that unifY (a, iJ(C)) is defined. Recall that the dot on o
denotes the generalization to-atoms (see section 2.2). If no such clause exist, we have failure and the
set {8} is delivered. Vfe have to be careful: we do not look for a candidate clause a~ · · · in P, but
in a syntactic variant '1',(P), where all variables are taken from Var,.

Suppose we can find a clause in '1',(P) of the form a ~ C 1 I C2, such that a unifies with iJ(C). We
try to resolve the guard C 1 • This done recursively in our definition: we assume that we "know" which
process is associated with C i. given P and r· l (the concatenation with I is to avoid clashes with vari­
ables). There is no interaction with other processes during the resolving of the guard, so we can
abstract from the tree like structure by applying the operators trace and restr, and only consider what
the possible substitutions are that resolve the guard. We also signify an infinite behaviour. If the set
of sequences substitutions is non empty, we can take an element from it ("commit") and continue
with the execution of the body C2 , given P and r·2.

When we have as goal a conjunct, we put them in parallel in a safe way by our mechanism of renam­
ing. The parallelism is modeled by interleaving. It is not difficult to see that this yields the same
results as "true" concurrency.

The semantic function CS will be the (unique) fixed point of

Fcs : (Conj X ProgE X Seq ~Process) ~(Conj X ProgE X Seq ~Process).

First we consider the case that the conjunct is an atom:

Fcs(<f>)(a,P,r)(o)= { 8}

if there is no clause in '1',(P) whose head unifies with iJ(a), and if there exist such a clause we define

Fcs(<f>)(a,P,r)(o)=

A

{(O 0 o · y) 0 <f>(C2,P,r·2):

3(a'~C1(C2) E '1',(P)[(J = unifY(a',iJ(a)) /\
A

y E trace(restr(<f>(Ci.P,r-1)))(0 ° o) /\

(=I ~ o = © /\ (=& ~ o = E9 n u

A

{(O 0 o) 0 <f>(C2,P,r·2) :

3(a'~(C2) E '1',(P) [iJ = unifY(a',il(a)) /\

(=I ~ o = © /\ f=& ~ o = E9 n u

11

GHC, and Parlog. In [Levi & Palamidessi 1987] a language is defined which contains all the
languages mentioned above as subset. It would be interesting to see whether our techniques can be
used to assign a process based semantics to this language.

An other issue for further research is the fully abstractness of the semantics. We have added extra
information to make our semantics compositional. The ·question arises: did we add not too much
information? We expect that we have to remove some of the information that is contained in the tree
like structures to make our semantics fully abstract. Interesting work on the comparison between
operational and denotational semantics can be found in [Debray & Mishra 1987] and in [van Veen &
de Vink 1985]. Both consider semantics for PROLOG. Due to the deterministic nature of this
language the compositional denotational semantics equals the operational semantics.

Acknowledgements: we would like to thank the members of the concurrency groups at the Centre for
Mathematics and Computer Science and at the Free University, both in Amsterdam. Jaco de Bakker
for his insistence on a pure topological model (not mixed with order theory) and for providing the
mathematical basis (processes) for this work. The non closedness of some operators on processes were
also pointed out by him. Stylistic remarks on this paper are also acknowledged. The work of Erik de
Vink on the foundations of logic programming was a starting point from the logic programming side.
Some errors in previous versions of this paper were found by him and by Frank de Boer. Jan Rutten
and Pierre America gave a fresh look at domain equations. Some of the notation was borrowed from
papers from members of the concurrency groups. Also we would like to thank Catuscia Palamidessi
for the discussions about read only variables and Krzysztof Apt for providing some material on CP.

7. REFERENCES

[AMERICA & RUTIEN 1987] P. America, J. Rutten, Solving Reflexive Domain Equations in a Category
of Complete Metric Spaces, Proceedings 3rd workshop on the Mathematical Foundations of Program­
ming Language Semantics, to appear.

[APT & VAN EMDEN 1982] K.R. Apt, M.H. van Emden, Contributions to the theory of logic program­
ming, Journal of the ACM 29, 1982, pp. 841-862.

[DE BAKKER & ZUCKER 1982] J.W. de Bakker, J.I. Zucker, Processes and the Denotational Semantics
of Concurrency, Information and Control 54, 1982, pp. 70-120.

[DE BAKKER & ZUCKER 1983] J.W. de Bakker, J.I. Zucker, Compactness in Semantics for Merge and
Fair Merge, Proceedings Workshop Logic of Programs, Springer, 1983, pp. 18-33.

[DE BAKKER ET AL 1984] J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer, Linear Time and
Branching Time Semantics for Recursion with Merge, Theoretical Computer Science 34, 1984, pp.
135-156.

[DEBRAY & MISHRA 1987] S.K. Debray, P. Mishra, Denotational and Operational Semantics for Pro­
log, Proceedings of 3rd Working Conference on the Formal Description of Programming Concepts,
North-Holland, 1987, pp. 245-270.

[DUGUNDJI 1966] J. Dugundji, Topology, Allyn and Bacon Inc, 1966.

[VAN EMDEN 1986] M. van Emden, Quantitative Deduction and its fixpoint theory, Journal on Logic
Programming 1, 1986, pp. 37-53.

12

[ENGELKING 1977] R. Engelking, General Topology, Polish Scientific Publishers, 1977.

[FITTING 1985A] Fitting, A Deterministic Prolog Fixpoint Semantics, Journal on Logic Programming
2, 1985, pp. 111-118.

[FITTING 1985B] Fitting, A Kripke-Kleene semantics for Logic Programs, Journal on Logic Program­
ming 4, 1985, pp. 295-312.

[GELERNTER 1984] D. Gelernter, A Note on Systems Programming in Concurrent Prolog, Proceedings
1984 Symposium on Logic Programming, IEEE Comp. Society Press, 1984, pp. 76-82.

[LLOYD 1984] J.W. Lloyd, Foundations of Logic Programming, Springer, 1984.

[LEVI & PALAMIDESSI 1985] G. Levi, C. Palamidessi, The declarative semantics of logical read-only
variables, Proceedings 1985 Symposium on Logic Programming, IEEE Comp. Society Press, 1985, pp.
128-137.

[LEVI & PALAMIDESSI 1987] G. Levi, C. Palamidessi, An approach to the declarative semantics of syn­
chronization in logic languages, to appear.

[NAIT ABDALLAH 1984] M.A. Nait Abdallah, On the interpretation of infinite computations in logic
programming, Proceedings 11 th ICALP, (J. Paredaens ed.), Springer, 1984, pp. 358-370.

[SARASWAT 1986] V.A. Saraswat, Problems with Concurrent Prolog, CMU-CS-86-100, Departement of
Computer Science, Carnegie-Mellon University, 1986

[SARASWAT 1987] V.A. Saraswat, The concurrent logic programming language CP: Definition and
Operational Semantics, Proceedings 1987 Principles Of Programming Languages, 1987, pp. 49-62.

[SHAPIRO 1983] E.Y. Shapiro, A subset of Concurrent Prolog and its interpreter, Techn. Rep. TR-003,
ICOT, 1983.

[VAN VEEN & DE VINK 1985] S. van Veen, E. de Vink, Semantics of Logic Programming, Note CS­
N8508, Centre for Mathematics and Computer Science, 1985.

13

APPENDIX: MATHEMATICAL PRELIMINARIES

In this appendix we collect some definitions and properties concerning metric spaces in order to
refresh the reader's memory or to introduce him to this subject.

DEFINITION A. I (Metric space)
A metric space is a pair (M,d) with Ma non-empty set and d a mapping d:MXM-+[0,1] (a metric or
distance), which satisfies the following properties:
(a) 'v'x,yEM[d(x,y)=O ~ x =y]
(b) 'v'x,yEM[d(x,y)=d(y,x)]
(c) 'v'x,y,zEM[d(x,y) ~ d(x,z) + d(z,y)].

We consider only metric spaces with bounded diameter: the distance between two points never
exceeds 1.

DEFINITION A.2

Let (M,d) be a metric space, let (xi)i be a sequence in M.
(a) We say that (x/)i is a Cauchy sequence whenever we have:

'v'E:>O 3NEN 'v'n,m>N [d(xn,Xm)<E:].
(b) Let xEM. We say that (x;)i converges to x and call x the limit of (xi)i whenever we have:

'v'E:>O 3N EN 'v'n > N [d(X,Xn)<E:].
Such a sequence we call convergent. Notation: 1imi__.00 x; =x.

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele­
ment of M;

DEFINITION A.3
Let (Mi,d1),(M2,d2) be metric spaces.
(a) We say that (Mi.d1) and (M2,d2) are isometric if there exists a bijection/:M1-+M2 such that:

'v'x,yEM1 [d2(f(x),/(y))=d1(x,y)]. When f is not a bijection (but only an injection), we call it
an isometric embedding.

(b) Let f:M 1-+M 2 be a function. We call f continuous whenever for each sequence (xi); with limit x
in M1 we have that limi__.00/(xJ=/(x).

(c) Let A;;o.O. With M 1-+A M2 we denote the set of functions /from M 1 to M2 that satisfy the fol­
lowing property:
'v'x,yEM1 [d2(f (x).JV;))~A ·d1(x,y)].
Functions f in M 1-+ M 2 we call non-distance-increasing (NDI), functions f in M 1-+£ M 2 with
O~E:< I we call contracting.

THEOREM A.4 (Banach's fixed-point theorem)
Let (M,d) be a complete metric space and f :M-+M a contracting function. Then there exists an x EM
such that the following holds:
(1) f(x)=x (x is afixedpoint of j),
(2) 'v'yEM [f(y)=y ~ y =x](x is unique),
(3) 'v'xoEM (litnn__.00J<n\xo)=x1 where r+ 1(xo)=/(fn(xo)) and/0(xo)=xo.

DEFINITION A.5 (Closed and compact subsets)
(a) A subset X of a complete metric space (M,d) is called closed whenever each Cauchy sequence in

X converges to an element of X.
(b) A subset X of a complete metric space (M,d) is called compact whenever ep sequence in X has

a converging subsequence which converges to an element of X.

14

REMARK:
(a) The definition of compactness given here is in fact the definition of sequential compactness. In a

metric space this is equivalent to compactness.
(b) In a metric space every compact set is closed.

DEFINITION A.6
Let (M,d),(Mi.d1),(M2,d2) be metric spaces.
(a) With M 1_,,M2 we denote the set of all continuous functions from M 1 to M2. We define a

metric dF on M 1_,,M2 as follows. For every Ji.Ii EM 1 ~M2

dF(/1,fi)=supxeM, {d2(/1(x),fi(x))}.

(b) Let <fPc1oseiM)=def{X<;;;,M: Xis closed and non-empty} and let '!Pcomp(M)=def{X<;;;,M: Xis com­
pact and non-empty}. We define a metric du both on <fPc1oseiM) and <fPcomp(M), called the Haus­
dorff distance, as follows. For every X, Y E<fPc1oseiM) (or E<fPcomp(M))

du(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} },

where d(x,Z)=de/infzez{d(x,z)} for every Z <;;;,M, xEM.
An equivalent definition would be to set Vr(X)={yEMj3xEX[d(x,y)<rJ} for r>O,XCM,
and then to define

du(X,Y) = inf{r>Oj XCVr(Y)/\ YCVr(X)}.

PROPOSITION A. 7
Let (M,d), (Mi.d1),(M2,d2), dF, du be as in definition A.6 and suppose that (M,d), (Mi.d1),(M2,d2)
are complete. We have that
(a) (M1_,,M2,dF),
(b) (<fPc1osed(M),du)
(c) (<fPcomp(M),du)
are complete metric spaces. (Strictly speaking, for the completeness of M 1_,,Af2 we do not need the com­
pleteness of M1.)

The proof of proposition A.7 (a) is straightforward because the distance between two points never
exceeds l. Part (b) and (c) are more involved. They can be proved with the help of the following
characterization of the completeness of (<fPc1osed(M),du).

PROPOSITION A.8
Let (<fPc1oseiM),du) be as in definition A.6. Let (X;); be a Cauchy sequence in '!Pc1oseiM). We have:

lim;~ooXi = {lim;~00 x; : X;E.X;, (x;); a Cauchy sequence in M}.

Proofs of proposition A.7(b) and A.8 can be found in (for instance) [Dugundji 1966] and [Engelk­
ing 1977]. The proofs are also repeated in [de Bakker & Zucker 1982].

THEOREM A.9 (Metric completion)
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion of M)
together with an isometric embedding i :M _,,M such that:
(I) Mis complete
(2) For every complete !!'etric space M' a!!_d isometric embedding j :M _,,M' there exists a unique

isometric embedding j :M _,,M' such that j 0 i = j.

PROOF

15

The space M is constructed by taking the set of all Cauchy sequences in M and dividing it out by the
equivalence relation = defined by

(Xn)n = (yn)n =def lim,, ood(XmJn)=O.

The metric de on M is defined by

dc([(xn)k,[(yn)]=:) =def Iimn-+ood(xn,Jn)

and the embedding i will map every x EM to the equivalence class of the sequence of which all ele­
ments are equal to x:

i(x) = [(x)nk·

It is easy to show that M and i satisfy the above properties.

0

