Skip to main content

Marginal problem in different calculi of AI

  • Logics
  • Conference paper
  • First Online:
Advances in Intelligent Computing — IPMU '94 (IPMU 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 945))

Abstract

By the marginal problem we understand the problem of the existence of a global (full-dimensional) knowledge representation which has prescribed lessdimensional representations as marginals. The paper deals with this problem in several calculi of AI: probabilistic reasoning, theory of relational databases, possibility theory, Dempster-Shafer's theory of belief functions, Spohn's theory of ordinal conditional functions. The following result, already known in probabilistic framework and in the framework of relational databases, is shown also for the other calculi: the running intersection property is the necessary and sufficient condition for pairwise compatibility of prescribed less-dimensional knowledge representations being equivalent to the existence of a global representation. Moreover, a simple method of solving the marginal problem in the possibilistic framework and its subframeworks is given.

Supported by the grant n. 201/94/0471 “Marginal problem and its application” of the Grant Agency of Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeri, C., Fagin, R., Maier, D., Yannakis, M.: On the desirability of acyclic database schemes. J. Assoc. Comp. Mach. 30 (1983) 479–513.

    Google Scholar 

  2. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146–158.

    Google Scholar 

  3. Deming, W.E., Stephan, F.F.: On a least square adjustment of a sampled frequency table when expected marginal totals are known. Ann. Math. Statis. 11 (1940) 427–444.

    Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statis. 38 (1967) 325–339.

    Google Scholar 

  5. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York-London (1988).

    Google Scholar 

  6. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. Report IRIT/97-98/R, Institut de Recherche en Informatique de Toulouse (1991).

    Google Scholar 

  7. Hunter, D.: Graphoids and natural conditional functions. Int. J. Approx. Reasoning 5 (1991) 485–504.

    Google Scholar 

  8. Jiroušek, R.: Solution of the marginal problem and decomposable distributions. Kybernetika 27 (1991) 403–412.

    Google Scholar 

  9. Kellerer, H.G.: Verteilungsfunktionen mit gegebenem Marginalverteilungen (in German). Z. Wahrsch. Verw. Gebiete 3 (1964) 247–270.

    Google Scholar 

  10. Malvestuto, F.M.: Existence of extensions and product extensions for discrete probability distributions. Discr. Math. 69 (1988) 61–77.

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo CA (1988).

    Google Scholar 

  12. Perez, A., Jiroušek, R.: Constructing an intensional expert system INES. In: J.H. von Bemmel, F. Grémy, J. Zvárová, (eds.): Medical Decision Making: Diagnostic Strategies and Expert Systems. North-Holland, Amsterdam (1985), 307–315.

    Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton-London (1976).

    Google Scholar 

  14. Shenoy, P.P.: On Spohn's rule for revision of beliefs. Int. J. Approx. Reasoning 5 (1991) 149–181.

    Google Scholar 

  15. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: W.L. Harper, B. Skyrms (eds.): Causation in Decision, Belief Change, and Statistics vol. II. Kluwer, Dordrecht (1988), 105–134.

    Google Scholar 

  16. Studený, M.: Conditional independence and natural conditional functions. Int. J. Approx. Reasoning 12 (1995) 43–68.

    Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set and Systems 1 (1978) 3–28.

    Google Scholar 

  18. Zadeh, L.A.: A theory of approximate reasoning. In: J.E. Hayes, D. Michie, L.I. Mikulich (eds.): Machine Intelligence 9. Ellis Horwood, Chichester (1979), 149–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernadette Bouchon-Meunier Ronald R. Yager Lotfi A. Zadeh

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Studený, M. (1995). Marginal problem in different calculi of AI. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds) Advances in Intelligent Computing — IPMU '94. IPMU 1994. Lecture Notes in Computer Science, vol 945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035968

Download citation

  • DOI: https://doi.org/10.1007/BFb0035968

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60116-6

  • Online ISBN: 978-3-540-49443-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics