Abstract
By the marginal problem we understand the problem of the existence of a global (full-dimensional) knowledge representation which has prescribed lessdimensional representations as marginals. The paper deals with this problem in several calculi of AI: probabilistic reasoning, theory of relational databases, possibility theory, Dempster-Shafer's theory of belief functions, Spohn's theory of ordinal conditional functions. The following result, already known in probabilistic framework and in the framework of relational databases, is shown also for the other calculi: the running intersection property is the necessary and sufficient condition for pairwise compatibility of prescribed less-dimensional knowledge representations being equivalent to the existence of a global representation. Moreover, a simple method of solving the marginal problem in the possibilistic framework and its subframeworks is given.
Supported by the grant n. 201/94/0471 “Marginal problem and its application” of the Grant Agency of Czech Republic.
Preview
Unable to display preview. Download preview PDF.
References
Beeri, C., Fagin, R., Maier, D., Yannakis, M.: On the desirability of acyclic database schemes. J. Assoc. Comp. Mach. 30 (1983) 479–513.
Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146–158.
Deming, W.E., Stephan, F.F.: On a least square adjustment of a sampled frequency table when expected marginal totals are known. Ann. Math. Statis. 11 (1940) 427–444.
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statis. 38 (1967) 325–339.
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York-London (1988).
Dubois, D., Lang, J., Prade, H.: Possibilistic logic. Report IRIT/97-98/R, Institut de Recherche en Informatique de Toulouse (1991).
Hunter, D.: Graphoids and natural conditional functions. Int. J. Approx. Reasoning 5 (1991) 485–504.
Jiroušek, R.: Solution of the marginal problem and decomposable distributions. Kybernetika 27 (1991) 403–412.
Kellerer, H.G.: Verteilungsfunktionen mit gegebenem Marginalverteilungen (in German). Z. Wahrsch. Verw. Gebiete 3 (1964) 247–270.
Malvestuto, F.M.: Existence of extensions and product extensions for discrete probability distributions. Discr. Math. 69 (1988) 61–77.
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo CA (1988).
Perez, A., Jiroušek, R.: Constructing an intensional expert system INES. In: J.H. von Bemmel, F. Grémy, J. Zvárová, (eds.): Medical Decision Making: Diagnostic Strategies and Expert Systems. North-Holland, Amsterdam (1985), 307–315.
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton-London (1976).
Shenoy, P.P.: On Spohn's rule for revision of beliefs. Int. J. Approx. Reasoning 5 (1991) 149–181.
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: W.L. Harper, B. Skyrms (eds.): Causation in Decision, Belief Change, and Statistics vol. II. Kluwer, Dordrecht (1988), 105–134.
Studený, M.: Conditional independence and natural conditional functions. Int. J. Approx. Reasoning 12 (1995) 43–68.
Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set and Systems 1 (1978) 3–28.
Zadeh, L.A.: A theory of approximate reasoning. In: J.E. Hayes, D. Michie, L.I. Mikulich (eds.): Machine Intelligence 9. Ellis Horwood, Chichester (1979), 149–194.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Studený, M. (1995). Marginal problem in different calculi of AI. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds) Advances in Intelligent Computing — IPMU '94. IPMU 1994. Lecture Notes in Computer Science, vol 945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035968
Download citation
DOI: https://doi.org/10.1007/BFb0035968
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60116-6
Online ISBN: 978-3-540-49443-0
eBook Packages: Springer Book Archive