Abstract
We will demonstrate how to use Kolmogorov complexity to do the average-case analysis via some examples. These examples include: longest common subsequence problem and shortest common supersequence problem [9, 11], problems in computational geometry [14], average case analysis of Heapsort [19, 17], average nni-distance between two binary rooted leave-labeled trees [23], compact routing in computer networks.
Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT grant, and the Steacie Fellowship.
Partially supported by the European Union through NeuroCOLT ESPRIT Working Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract number NF 62-376.
Preview
Unable to display preview. Download preview PDF.
References
B.E. Briley, Some new results on average worst case carry. IEEE Trans. Computers, C-22:5 (1973).
A.W. Burks, H.H. Goldstine, J. von Neumann, Preliminary discussion of the logical design of an electronic computing instrument. Institute for Advanced Studies, Report (1946). Reprinted in John von Neumann Collected Works, vol 5 (1961).
H. Buhrman, J.H. Hoepman, P.M.B. Vitányi, Optimal routing tables, Proc. 15th ACM Symp. Principles Distribut. Comput., ACM Press, 1996, 134–142.
R. Beigel, W. Gasarch, M. Li, and L. Zhang, Addition in log2 n steps on average: a simple analysis, to appear in Theoretical Computer Science (Note).
T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms. MIT Press, 1990.
V. Chvátal and D. Sankoff, Longest common subsequences of two random sequences. J. Appl. Probab. 12 (1975), 306–315.
K. Culik JrII, D. Wood, A note on some tree similarity measures, Inform. Process. Lett., 15 (1982), 39–42.
R.W. Floyd, Treesort 3: Algorithm 245, Comm. ACM, 7 (1964), 701.
D. Foulser, M. Li, and Q. Yang, Theory and algorithms for plan merging. Artificial Intelligence, 57 (1992), 143–181.
K. Hwang, Computer arithmetic: principles, architecture, and design. Wiley, New York, 1979.
T. Jiang and M. Li, On the approximation of shortest common supersequences and longest common subsequences. SIAM J. Comput., 24:5 (1995), 1122–1139.
A.K. Jagota and K.W. Regan, Testing Neural Net Algorithms on General Compressible Data, In Proceedings of the International Conference on Neural Information Processing, Hong Kong, 1996, Springer-Verlag.
K. Kobayashi, On malign input distributions for algorithms, IEICE Trans. Inform. and Syst., E76-D:6 (1993), 634–640.
M. Li and B.H. Zhu, Applications of Kolmogorov complexity in computational geometry, manuscript, City Univ. Hong Kong, 1997.
M. Li, J. Tromp, and L. Zhang, On the nearest neighbor interchange distance, COCOON'96, Hong Kong, 1996. Final version to appear in J. Theoret. Biology, 1996.
M. Li and P. Vitányi, Average case complexity equals worst-case complexity under the Universal Distribution. Inform. Process. Lett., 42 (1992), 145–149.
M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applications. Springer-Verlag, New York, 1993. 2nd Edition, 1997.
P.B. Miltersen, The complexity of malign ensembles, SIAM J. Comput., 22:1 (1993), 147–156.
I. Munro, Personal communication, 1993.
G. Schay, How to add fast-on average. American Mathematical Monthly, 102:8 (1995), 725–730.
R. Schaffer and R. Sedgewick, J. Algorithms, 15 (1993), 76–100.
J.M. Steele, An Efron-Stein inequality for nonsymmetric statistics. Ann. Stat. 14 (1986) 753–758.
D. Sleator, R. Tarjan, and W. Thurston, Short encodings of evolving structures, SIAM J. Discr. Math., 5 (1992), 428–450.
J.W.J. Williams, Algorithm 232: HEAPSORT, Comm. ACM, 7 (1964), 347–348.
Author information
Authors and Affiliations
Corresponding author
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, M., Vitányi, P. (1997). Average-case analysis via incompressibility. In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036170
Download citation
DOI: https://doi.org/10.1007/BFb0036170
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63386-0
Online ISBN: 978-3-540-69529-5
eBook Packages: Springer Book Archive