Abstract
We consider two ways of assigning semantics to a class of statements built from a set of atomic actions (the ‘alphabet‘), by means of sequential composition, nondeterministic choice, recursion and merge (arbitrary interleaving). The first is linear time semantics (LT), stated in terms of trace theory; the semantic domain is the collection of all closed sets of finite and infinite words. The second is branching time semantics (BT), as introduced by de Bakker and Zucker; here the semantic domain is the metric completion of the collection of finite processes. For LT we prove the continuity of the operations (merge, sequential composition) in a direct, combinatorial way.
Next, a connection between LT and BT is established by means of the operation trace which assigns to a process its set of traces. If the alphabet is finite, the trace set of a process is closed and trace is a continuous operation. Using trace, we then can carry over BT into LT.
Preview
Unable to display preview. Download preview PDF.
References
DE BAKKER, J.W., Mathematical Theory of Program Correctness, Prentice-Hall International, 1980.
DE BAKKER, J.W., J.A. BERGSTRA, J.W. KLOP & J.-J. CH. MEYER, Linear time and branching time semantics for recursion with merge. Report IW 211/82, Mathematical Centre, Amsterdam 1982.
DE BAKKER, J.W. & J.I. ZUCKER, Denotational semantics of concurrency, Proc. 14th ACM Symp. on Theory of Computing, pp.153–158, 1982.
DE BAKKER, J.W. & J.I. ZUCKER, Processes and the denotational semantics of concurrency, Report IW 209/82, Mathematisch centrum, Amsterdam 1982.
BERGSTRA, J.A. & J.W. KLOP, Fixed point semantics in process algebras, Report IW 206/82, Mathematisch Centrum, Amsterdam 1982.
ENGELKING, R., General Topology, Polish Scientific Publishers, 1977.
FRANCEZ, N., D.J. LEHMANN & A. PNUELI, Linear history semantics for distributed languages, Proc. 21st Symp. Foundations of Computer Science, IEEE 1980, pp.143–151.
MILNER, R., A Calculus for Communicating Systems, Springer LNCS 92, 1980.
MILNER, R., A complete inference system for a class of regular behaviours, Preprint, Edinburgh 1982.
NIVAT, M., Mots infinis engendrés par une grammaire algébrique, RAIRO Informatique Théorique Vol.11 (1977) pp.311–327.
NIVAT, M., Sur les ensembles des mots infinis engendrés par une grammaire algébrique, RAIRO Informatique Théorique Vol.12 (1978) pp.259–278.
NIVAT, M., Infinite words, infinite trees, infinite computations, Foundations of Computer Science III.2 (J.W. de Bakker & J. van Leeuwen,eds.) pp.3–52, Mathematical Centre Tracts 109, 1979.
NIVAT, M., Synchronization of concurrent processes, Formal Language Theory (R.V. Book, ed.), pp.429–454, Academic Press, 1980.
PLOTKIN, G.D., A power domain construction, SIAM J. on Comp., 5 (1976), pp.452–487.
SCOTT, D.S., Data types as lattices, SIAM J. on Comp., 5 (1976), pp.522–587.
SCOTT, D.S., Domains for denotational semantics. Proc. 9th ICALP (M. Nielsen & E.M. Schmidt, eds.), pp.577–613, Springer LNCS 140, 1982.
SMYTH, M.B., Power domains, J. Comp. Syst. sciences, 16 (1978), pp.23–36.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1983 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Bakker, J.W., Bergstra, J.A., Klop, J.W., Meyer, J.J.C. (1983). Linear time and branching time semantics for recursion with merge. In: Diaz, J. (eds) Automata, Languages and Programming. ICALP 1983. Lecture Notes in Computer Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036896
Download citation
DOI: https://doi.org/10.1007/BFb0036896
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-12317-0
Online ISBN: 978-3-540-40038-7
eBook Packages: Springer Book Archive