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Abstract

In this paper we introduce a logic for parametric polymorphism. Just as LCF is a
logic for the simply-typed λ-calculus with recursion and arithmetic, our logic is a logic for
System F. The logic permits the formal presentation and use of relational parametricity.
Parametricity yields—for example—encodings of initial algebras, final co-algebras and
abstract datatypes, with corresponding proof principles of induction, co-induction and
simulation.

1 Introduction

In this paper we introduce a logic for parametric polymorphism, in the binary relational
sense of Reynolds [Rey83]. Just as LCF is a first-order logic for the simply-typed λ-calculus,
with recursion and arithmetic, so our logic is a second-order logic for System F. It is intended
as a step towards a general logic of polymorphically typed programs. The terms are those
of the second-order λ-calculus, and the formulae are built from equations and relations by
propositional operators and quantifiers over elements of types, or over types, or over relations
between types. The logic permits the formal presentation and use of relational parametricity,
which is expressed by an axiom schema. Parametricity yields—for example—encodings of
initial algebras, final co-algebras and abstract datatypes, with corresponding proof principles
of induction, co-induction and simulation.

Our first goal is to provide a formal system for arguments that exploit relational para-
metricity. In all models of System F, standard constructions such as products and initial
algebras are available in a weak sense (see e.g. [Böh85, Has90, RP90, Wra89]). If the
models are relationally parametric, then these constructions become universal constructions
in the usual sense of category theory. Bainbridge, Freyd, Scedrov, and Scott have given
such results for the parametric Per model [BFSS90], and Hasegawa and Wadler for classes
of models [Has90, Wad89]. Hasegawa [Has91] has shown that the second order minimal
model—arising from the maximal consistent theory of Moggi and Statman—is parametric.
By defining a formal logic, we hope to display the assumption of relational parametricity in
a clear way, and to be able to obtain simple, general arguments for the results.

Our second goal is to pursue the idea of LCF. In LCF, a logic is given over a simply-
typed λ-calculus with recursion and arithmetic. This λ-calculus is suitable for denotational
semantics, and thus the corresponding logic acts as a rather powerful logic of programs.
However, the simply-typed λ-calculus is inadequate for dealing with programming languages
with abstract or polymorphic types, and an extension of the kind considered here is needed.
The present work is but an intermediate step: it does not include recursion, at either
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the level of values or the level of types. Moreover, one may also wish to consider richer
type systems (e.g., that of Fω or even Constructions), richer logics (e.g., that of Topos
Theory), or more general notions of computation (e.g., as in Moggi’s suggestions for the use
of monads). In yet another direction, we may consider a formal theory of subtypes, based,
say, on F≤ [CG91, CG92].

There has been some work along related lines. Abadi, Cardelli, and Curien gave a system
with very elementary judgments and few relations, and with a syntax as close as possible
to the basic typed λ-calculus [ACC93]. Mairson used second-order logic over the untyped
λ-calculus [Mai91]. He interpreted the types of System F as relations; as it happens his
interpretation of polymorphic types is not parametric, but it could easily be made so. The
second-order theory of subtypes of Cardelli, Martini, Mitchell and Scedrov embodies some
aspects of parametricity via an equational rule [CMMS91].

In Section 2 of this paper we present the logic. Apart from axioms giving the equational
theory of System F, the only non-logical principle is a schema for parametricity; further, only
intuitionistic reasoning is employed. Other axioms may well be possible: one would expect
that intuitionistic reasoning is (unsurprisingly) consistent with various choice principles. The
availability of these principles would be a miniature form of Pitts’ result that polymorphism
can be considered as set-theoretic as long as one works constructively [Pit87]. A model can be
provided as in [BFSS90]; it remains to consider a more abstract notion and other examples.
We also compare other notions of polymorphism: we present a tentative formalisation of
Strachey’s idea; we consider the dinatural approach of Bainbridge et al; and, finally, we
make the evident generalisation of Reynold’s binary relations to relations of other degrees.
We conjecture that if two terms of System F are equal in all models parametric in Strachey’s
sense then they are also equal in all models parametric in Reynold’s sense. We prove that a
schema expressing dinaturality is a consequence of the schema expressing binary relational
parametricity. The relationship betweeen the various notions of relational parametricity is
unknown.

In Section 3 we consider a variety of constructions showing the availability of finite
products and sums, second-order existential types, initial algebras and final co-algebras.
The constructions are by now standard; the main point here is that we can derive their
properties within our logic. We also consider the logical properties of the constructions. For
example, we give a general induction principle for initial algebras and a general bisimulation
(or co-induction) principle for final co-algebras [AM89, Smy91, Pit92]. For second-order
existential types, parametricity becomes a “simulation principle”, namely that if there is
a relation between two types respected by the two corresponding “implementations” then
the corresponding elements of the existential type (the abstract types) are equal. Thus we
also obtain a proof rule for abstract types, along the lines envisaged by Mitchell [Mit91].
Presumably one would obtain similar principles relative to relational parametricity of other
degrees, and, again, it would be interesting to know the relationships between these. In
both Sections 2 and 3, we generally omit proofs.

2 Basic Logic

In this section we present the basic logic. The types and terms are those of System F and
they are given by the grammar:

Types: A ::= X | A → B | ∀X. A
Terms: t ::= x | λx : A. t | u(t) | ΛX. t | t(A)

Here X ranges over type variables, x over ordinary variables; we use notations such as
A[X] to indicate possible occurrences of variables in expressions, and then may write for



example A[B] to represent the result of substituting B for X in A (avoiding capture of
bound variables).

Using these terms we build up formulae from equations and binary relations.

Formulae: φ ::= (t =A u) | R(t, u) |
φ ⊃ ψ | ∀x : A. φ | ∀X. φ | ∀R⊂A×B. φ |
⊥| φ ∧ ψ | φ ∨ ψ | ∃x : A. φ | ∃X. φ | ∃R⊂A×B. φ

Here R ranges over relation variables. The equality symbol is subscripted with a type, the
type of the terms being equated. In System F, this type is unique, in a given environment,
and so we often leave it implicit. The basic constructs are implication (⊃) and three sorts
of universal quantifiers: over values; over types; and over relations between types (where
R⊂A×B is read as “R is a relation between A and B”). The other constructs are useful but
not altogether necessary. We make use of standard abbreviations when writing formulae,
terms and types.

Typing judgments are used to specify which terms have which types, and which formulae
are well-formed. A second-order environment E is a finite sequence of type variables X or
typings x : A in which no variable is introduced twice. The judgments E ` A Type and
E ` t : A are defined in the usual way. To specify the well-formed formulae, we also need
relation environments, which are finite sequences of relational typings R⊂A × B in which
no variable is introduced twice. We define a judgment E ` G REnv to assert that G is a
well-formed relation environment given E, with the obvious rule that if R⊂A×B appears in
G then A and B should be well-formed types given E. We define a judgment E;G ` φ Prop
to assert that φ is a well-formed formula given E; G. The rules for atomic formulae are:

E ` t : A E ` u : A E ` G REnv
E; G ` t =A u Prop

E ` t : A E ` u : B E ` G REnv R⊂A×B in G
E; G ` R(t, u) Prop

Among the other rules we have, for example:

E,X; G ` φ Prop
E;G ` ∀X. φ Prop

E;G, R⊂A×B ` φ Prop
E; G ` ∀R⊂A×B. φ Prop

In order to define the consequence relation of the logic we need further logical appara-
tus. This concerns definable relations, their substitution for relation variables in formulae
(obtaining formulae) and for type variables in types (obtaining definable relations). Substi-
tution in formulae is needed for the rules for relational quantification; substitution in types
is needed to state the parametricity schema. Definable relations are given by the grammar:

Definable relations: ρ ::= (x : A, y : B). φ[x, y]

We say that such a ρ is a definable relation between A and B, writing this as ρ ⊂ A × B.
We define a judgment E; G ` ρ ⊂ A×B to assert that ρ is a well-formed definable relation
between A and B, given E; G. There is one rule for this judgment:

E; G, x : A, y : B ` φ Prop
E; G ` (x : A, y : B). φ ⊂ A×B

For example, the expression (x : A, y : A). (x =A y) defines the equality relation eqA on
A, and 〈f〉 = (x : A, y : B). (y =B f(x)) defines the graph of a function f ; here if f
has type A → B then 〈f〉 is a well-formed definable relation between A and B (given



appropriate E; G). We sometimes treat a relation variable R ⊂ A × B as the definable
relation (y : A, z : B). R(y, z).

When ρ is such a definable relation between A and B, we sometimes use the abbreviations
tρu or ρ(t, u) for the corresponding φ[t, u]. A definable relation ρ can be substituted for a
relation variable R in a formula ψ[R], yielding ψ[ρ]. In particular when ψ[R] is R(t, u), the
result of the substitution is ρ(t, u).

To define the substitution of definable relations for type variables in types, we need first
to be able to combine relations by exponentiation and universal quantification. If ρ ⊂ A×B
and ρ′ ⊂ A′ ×B′ then

(ρ → ρ′) ⊂ (A → A′)× (B → B′)

is defined by:
f(ρ → ρ′)g ≡ ∀x : A∀x′ : A′. (xρx′ ⊃ f(x)ρ′g(x′))

If ρ and ρ′ are well-formed given E;G then so is ρ → ρ′.
For universal quantification, if ρ ⊂ A×B, then

∀(Y, Z,R⊂Y × Z)ρ ⊂ (∀Y. A)× (∀Z. B)

is defined by:

y(∀(Y,Z, R⊂Y × Z). ρ)z ≡ ∀Y ∀Z∀R⊂Y × Z. ((yY )ρ(zZ))

If ρ is well-formed given E, Y, Z; G, (R⊂Y ×Z) then ∀(Y, Z,R⊂Y ×Z)ρ is well-formed given
E;G.

We can now define the substitution of definable relations for type variables in types. If
~X = X1, . . . , Xn, ~B = B1, . . . , Bn, ~C = C1, . . . , Cn, and ~ρ = ρ1, . . . , ρn where ρi ⊂ Bi × Ci,
then A[~ρ] ⊂ A[ ~B] × A[ ~C] is the result of substituting ~ρ for ~X in A[ ~X]. The definition of
A[~ρ] is by cases:

• if A is Xi then A[~ρ] is ρi;

• if A is A′ → A′′ then A[~ρ] = A′[~ρ] → A′′[~ρ];

• if A is ∀Y. A′[ ~X, Y ] then A[~ρ] = ∀(Y,Z, R⊂Y × Z). A′[~ρ,R].

If each ρi is well-formed given E;G then so is A[~ρ].
It remains to give axiom schemes and rules in order to define the consequence relation

of the logic. This relation is written as Γ `E;G φ, where Γ is a finite set of formulae, and all
formulae involved are well-formed given E; G. The proof system has three parts:

• standard rules for the connectives and quantifiers;

• axioms and rules for the equational part of System F;

• a schema to express relational parametricity.

Natural deduction rules for the connectives and quantifiers are given as usual for intuition-
istic logic. For example the rules for implication and universal quantification over types and
relations are:

Γ, φ `E;G ψ
Γ `E;G φ ⊃ ψ

Γ `E;G φ ⊃ ψ Γ `E;G φ
Γ `E;G ψ

Γ `E,X;G φ[X]
Γ `E;G ∀X. φ[X]

Γ `E;G ∀X. φ[X] E ` A Type
Γ `E;G φ[A]



Γ `E;G,R⊂A×B φ[R]
Γ `E;G ∀R⊂A×B. φ[R]

Γ `E;G ∀R⊂A×B. φ[R] E;G ` ρ ⊂ A×B
Γ `E;G φ[ρ]

In the above rules the usual provisions are made that the variables being bound do not
appear in assumptions.

We now give that part of the logic that deals with equality. This consists of certain
axioms and axioma schemes. We adopt the convention that if an axiom φ is written, what
is meant is that all sequents of the form Γ `E;G φ are asserted, where φ and all formulae in
Γ are well-formed for some E;G. Reflexivity is the axiom

∀X∀x : X. (x =X x)

Substitution is the axiom

∀X∀Y ∀R⊂X × Y ∀x : X∀x′ : X∀y : Y ∀y′ : Y.
R(x, y) ∧ x =X x′ ∧ y =Y y′ ⊃ R(x′, y′)

We also use the congruence schemas

(∀x : A. t =B u) ⊃ (λx : A. t) =A→B (λx : A. u)

(∀X. t =B u) ⊃ (ΛX. t) =∀X. B (ΛX. u)

Lastly there are β equalities:

∀x : A. ((λx : A. t)x =B t)

∀X. ((ΛX. t)X =B t)

and η equalities:
∀X∀Y ∀f : X → Y. ((λx : X. fx) =X→Y f)

∀f : ∀X. B. ((ΛX. fX) =∀X. B f)

We can now formulate the parametricity schema:

∀Y1 . . . ∀Yn∀u : (∀X. A[X, Y1, . . . , Yn]). u(∀X. A[X, eqY1
, . . . , eqYn

])u

where A has free type variables X,Y1, . . . , Yn.
To understand this, it is convenient to ignore the parameters, Y1, . . . , Yn, and expand

the definition to obtain

∀u : (∀X. A[X]). ∀Y ∀Z∀R⊂Y × Z. u(Y )A[R]u(Z)

This formula states that if one instantiates an element of a polymorphic type at two re-
lated types, then the two values obtained are themselves related; this statement expresses
Reynolds’ idea of binary relational parametricity.

One way to interpret this logic is to follow Bainbridge et al. [BFSS90], taking types
to be pers over the natural numbers and with universal quantification being interpreted
parametrically with respect to the double-negation-closed relations. Formulae are inter-
preted classically, with type variables ranging over pers, ordinary variables ranging over
equivalence classes relative to the appropriate per, and relation variables ranging over the
double-negation closed relations. There are other evident possibilities of interpretation; for
example one could interpret the logic intutionistically via a realisability interpretation. It
would be good to have a general framework for interpreting the logic. Both Reynolds and
Ma [MR92] and Hasegawa [Has90, Has91] have considered frameworks for parametric inter-
pretations of System F. Pitts has shown that every hyperdoctrine model of System F fully



embeds in a topos model [Pit87]. In this way the types of the model appear as “sets” in
the topos. Perhaps something similar can be done here, in such a way that the relations
of the model appear as relations in the topos, in the usual categorical sense. One would
hope for completeness results for the present logic. In this connection one can ask too
what is the most convenient language combining that of the present logic and the higher-
order logic afforded by a topos; this question is apposite even without any consideration of
parametricity.

Lemma 1 (Identity Extension Lemma) For any A[ ~X] with free variables in ~X it is
provable in the logic that

∀ ~X∀u : A, v : A. (uA[eq ~X ]v ≡ (u =A v))

Lemma 2 (Logical Relations Lemma) Let A1[ ~X], . . . , Am[ ~X], B[ ~X] have free type
variables in ~X. Suppose t[x1, . . . , xm] : B given the environment ~X, x1 : A1, . . . , xm : Am.
Then the following is provable in the logic without using the parametricity schema:

∀ ~X∀~Y ∀~R⊂ ~X × ~Y
∀x1 : A1[ ~X], . . . , xm : Am[ ~X]
∀y1 : A1[~Y ], . . . , ym : Am[~Y ].

(x1A1[~R]y1 ∧ . . . ∧ xmAm[~R]ym) ⊃ t[x1, . . . , xm] A[~R] t[y1, . . . , ym]

2.1 Categorical Matters

The types form a category, in a formal sense, within our logic. The idea is to take the type
X → X ′ as the “set” of morphisms from X to X ′. Composition is given by the combinator
comp : ∀X∀X ′∀X ′′ .(X ′ → X ′′) → (X → X ′) → (X → X ′′), where:

comp = ΛXΛX ′ΛX ′′λg : X ′ → X ′′λf : X → X ′λx : X. g(f(x))

and the identity, id : ∀X. (X → X) by:

id = ΛXλx : X. x

We write t;u for comp(A)(A′)(A′′)(u)(t) (where u and t have respective types A′ → A′′ and
A → A′, given E;G); we write idA for id(A). One can show that composition is associative,
in that it is provable in the logic (without using the parametricity schema) that:

∀X,X ′, X ′′, X ′′′.∀f : X → X ′, g : X ′ → X ′′, h : X ′′ → X ′′′. (f ; g); h = f ; (g; h)

and for the identity that:

∀X,X ′.∀f : X → X ′. (idX ; f = f) ∧ (f ; idX′ = f)

Now let A[ ~X, ~Y ] be a type such that all type variables in ~X have only negative occur-
rences, and all type variables in ~Y have only positive occurrences. Then one may think of
A[ ~X, ~Y ] as acting on types ~X, ~Y to produce a type. With an additional action on functions
one obtains an associated multivariant formal functor. This action is given by a term:

MA : ∀ ~X, ~Y . ∀ ~X ′, ~Y ′. ( ~X ′ → ~X) → (~Y → ~Y ′) → (A[ ~X, ~Y ] → A[ ~X ′, ~Y ′])

The term is given inductively on the structure of A.



MZ ~X~Y ~X ′ ~Y ′ ~f~g =











fi (if Z is the ith entry in ~X)
gj (if Z is the jth entry in ~Y )
idZ (otherwise)

M(B[~Y , ~X]→C[ ~X,~Y ])
~X~Y ~X ′ ~Y ′ ~f~g = λh : B[~Y , ~X] → C[ ~X, ~Y ].

(MB[~Y , ~X]
~Y ′ ~X ′~Y ~X~g ~f); h; (MC[ ~X,~Y ]

~X~Y ~X ′ ~Y ′ ~f~g)

M∀Z. B[ ~X,~Y ]
~X~Y ~X ′ ~Y ′ ~f~g = λz : (∀Z. B[ ~X, ~Y ])ΛZ. (B[ ~X, ~Y ] ~X~Y ~X ′ ~Y ′ ~f~g(zZ))

Given ~t,~u of types ~B′ → ~B, ~C → ~C ′, we write A[~t, ~u] for MA ~A~B ~A′ ~B′~t~u. One can show
that this yields a functor. That is, it is provable in the logic (without using the parametricity
schema) that:

∀ ~X, ~Y . (A[id ~X , id~Y ] = idA[ ~X,~Y ])

and also:

∀ ~X, ~Y , ~X ′, ~Y ′, ~X ′′, ~Y ′′. ∀~f : ~X ′ → ~X. ∀~g : ~Y → ~Y ′. ∀~f ′ : ~X ′′ → ~X ′. ∀~g′ : ~Y ′ → ~Y ′′.

(A[(~f ′; ~f), (~g; ~g′)] = A[~f,~g]; A[~f ′, ~g′])

One can also show that the operations of applying functors and taking graphs commute.
The opposite of a relation ρ ⊂ A×B is defined by:

ρop = (y : B, x : A).xρy

Lemma 3 (Graph Lemma) Let A[ ~X, ~Y ] be a type all of whose free variables appear in
the list ~X, ~Y and such that all type variables in ~X have only negative occurrences, and all
type variables in ~Y have only positive occurrences. Then it can be proved in the logic that:

∀ ~X, ~Y , ~X ′, ~Y ′. ∀~f : ~X ′ → ~X. ∀~g : ~Y → ~Y ′. (〈A[~f,~g]〉 = A[〈~f〉
op

, 〈~g〉])

Here two relations are considered as equal if they coincide extensionally.

2.2 Other Notions of Parametricity

As well as Reynold’s relational notion of parametricity, there are two others: an informal one
due to Strachey [Str67] and a categorical one due to Bainbridge et al. [BFSS90]. Strachey’s
original idea was that a parametric polymorphic function behaves the same way for all types.
Let us essay a formalisation of this idea. In Per models, universal types can be modelled
as intersections of all their instances; so at any type a polymorphic function has the same
realisor as at any other. It seems reasonable, therefore, to claim that Strachey could accept
any Per model as being parametric. Now Mitchell has shown that two terms of the same
type are equal in a wide class of such models iff their erasures are βη-equivalent [Mit90].
Let us (informally) define two terms of System F to be Strachey equivalent iff they are equal
in all models of parametric polymorphism in Strachey’s sense. Accepting Per models as
parametric, we are lead to assert that Strachey equivalence implies being of the same type
and having the same erasure. Conversely if two terms have the same type and erasure it
seems not unreasonable that they would denote the same element of any model parametric
in Strachey’s sense. We therefore tentatively identify Strachey equivalence with having the
same type and the same erasure (up to βη-equivalence).

Along similar lines, one would informally define two terms of System F to be Reynold’s
equivalent iff they are equal in all models of binary relational polymorphism in Reynold’s



sense. Anticipating a completeness theorem for our logic relative to models of System F
which are polymorphic in the binary relational sense, we can identify Reynold’s equivalence
with provable equality in our logic. Since there are many examples of terms provably
equal in the above theory which are not Strachey equivalent, Reynolds equivalence does not
imply Strachey equivalence. We conjecture the converse does hold, (A similar conjecture
appears in [ACC93].) Many positive instances encourage this conjecture. For example,
λx : (∀X. X). x and λx : (∀X. X). x(∀X. X) have the same erasure and the same type
(∀X.X) → (∀X.X), and they are provably equal; if X is not free in A then λx : (∀X.A).xB
and λx : (∀X. A). xC have the same erasure and the same type (∀X. A) → A, and they too
are provably equal.

According to Bainbridge et al. parametricity is provided by the notion of a dinatural
transformation: in certain models, all terms denote such transformations between types
[BFSS90]. One can express dinaturality by a schema. Let A[Y, X] be a type in which Y
occurs only negatively and X occurs only positively. Then:

∀X, Y ∀t : (∀X.A[X,X] → A[Y, Y )])∀f : X → Y.
A[f, idX ]; t(X); B[idX , f ] = A[idY , f ]; t(Y );B[f, idY ]

We show now that this schema follows from that for (relational) parametricity. (This seems
to answer a question raised in [BFSS90].)

First, the schema can be recast in a simpler way, as:

∀X,Y ∀f : X → Y. (·)X ; A[idX , f ] = (·)Y ;A[f, idY ]

where (again) A[Y, X] is a type in which Y occurs only negatively and X occurs only
positively and where, e.g., (·)X is λu : (∀X. A[X,X]). u(X). For the sake of notational
simplicity let us only consider the case where there are no parameters (i.e. free type variables
in A other than X or Y ). So let X and Y be types and suppose that f : X → Y . Choose u
in (∀X. A[X,X]). Appying the parametricity schema to 〈f〉 we obtain:

u(X)A[〈f〉, 〈f〉]u(Y )

We have that A[h, g] : A[V, U ] → A[V ′, U ′] given the U, V, U ′, V ′, g : U → U ′, h : V ′ → V .
We may therefore apply the Logical Relations Lemma, obtaining:

A[idX , f ](A[〈f〉, 〈f〉] → A[eqX , eqY ])A[f, idY ]

as f(〈f〉 → eqY )idY and idX(eqX → 〈f〉)f . But now it follows that:

A[idX , f ](u(X))A[eqX , eqY ]A[f, idY ](u(Y ))

and by the Identity Extension Lemma this is just:

A[idX , f ](u(X)) =A[X,Y ] A[f, idY ](u(Y ))

as required.
There is an evident generalisation of relational parametricity to n-ary relational para-

metricity. One introduces n-ary definable relations (n ≥ 0) by:

ρ = (x1 : A1, . . . , xn : An).φ[x1, . . . , xn]

We write ρ ⊂ (A1×. . .×An), and say ρ is well-formed given E; G provided that φ[x1, . . . , xn]
is well-formed given E, x1 : A1, . . . , xn : An; G. We also write ρ(t1, . . . , tn) for φ[t1, . . . , tn].
The place of the equality relation is taken by the diagonal ∆n

A where:

∆n
A = (x1 : A, . . . , xn : A). (x1 = x2) ∧ . . . ∧ (xn−1 = xn)



Exponentiation and universal quantification of n-ary relations is defined analogously to the
case of binary relations, and we may substitute definable n-ary relations in types to obtain
definable n-ary relations. The schema of n-ary relational parametricity is:

∀Y1 . . .∀Ym∀u : (∀X. A[X, Y1, . . . , Ym]). (∀X. A[X, ∆n
Y1

, . . . , ∆n
Ym

])(u, . . . , u)

where A has free type variables X,Y1, . . . , Yn. It is unknown what the relations between
these schemas are. We do not even know if the schema for binary relational parametricity
implies that for unary parametricity.

3 Parametricity and Datatypes

We now treat datatype constructors, comprising: finite products and sums, second-order
existential quantification; and initial algebras and final co-algebras. As well as categorical
properties, we derive logical properties of the constructs.

3.1 Products

For the empty product, let us define:

1 = ∀X. X → X

The term ? = ΛXλx : X. x inhabits 1. It is provable, using dinaturality, that:

Theorem 1 ∀u : 1. (u =1 ?)

Note that we have adopted an informal style, asserting formulae. What we intend is to
assert that the formulae are provable in the logic. The categorical statement

∀X∃!f : X → 1.>

of terminality follows at once from the theorem.
Turning to binary products, for any types A and B, set

A×B = ∀Z. ((A → B → Z) → Z)

where Z does not appear in A or B. This yields a weak product in System F, with combi-
nators fstA,B : A × B → A, sndA,B : A × B → B, and pairA,B : A → B → A × B, given
by

fstA,B(z) = zAKA,B

sndA,B(z) = zBK ′
A,B

(where KA,B = λx : Aλy : B. x and K ′
A,B = λx : Aλy : B. y),and:

pairA,B(a)(b) = ΛZλf : A → B → Z. fab

Below we drop the subscripts A, B and also write 〈t, u〉 for pair(t)(u).
The formulae

∀x : A∀y : B. (fst(〈x, y〉) = x)

and
∀x : A∀y : B. (snd(〈x, y〉) = y)

are provable without using parametricity. Using dinaturality we obtain:



Theorem 2 ∀w : A×B. (〈fst(w), snd(w)〉 =A×B w)

The theorem yields the usual categorical characterization of binary products, namely:

∀Z∀f : Z → A∀g : Z → B. ∃!h : Z → A×B. (f = h; fst ∧ g = h; snd)

Lastly we consider the action of binary products on relations. Given ρ ⊂ A×A′ and
σ ⊂ B × B′ we take (ρ× σ) ⊂ (A× B)× (A′ ×B′) to be ∀Z. (ρ → (σ → Z)) → Z. This is
obtained by substituting ρ and σ for X and Y in X×Y , which is ∀Z. (X → (Y → Z)) → Z.

Theorem 3

∀u : A×A′∀v : B ×B′. u(ρ× σ)v ≡ (fst(u)ρ fst(v) ∧ snd(u)σ snd(v))

3.2 Sums

For the empty sum, define:
0 = ∀X. X

Theorem 4 ∀u : 0. ⊥

It follows that 0 is initial in the categorical sense.
Turning to binary sums, for types A and B we take

A + B = ∀Z. ((A → Z) → (B → Z) → Z)

where Z does not occur in A or B. The combinators inlA,B : A → A+B, inrA,B : B → A+B,
and casesA,B : ∀Z. ((A → Z) → (B → Z) → (A + B) → Z) are defined by:

inlA,B(a) = ΛZλf : A → Zλg : B → Z. f(a)

inrA,B(b) = ΛZλf : A → Zλg : B → Z. g(b)

and
casesA,BCfgu = uCfg

We may drop the subscripts and may also write [t, u]C for cases(t, u).
It is provable without using parametricity that

∀x : A∀Z∀f : A → Z∀g : B → Z. ([f, g]Z(inl(x)) = f(x))

and
∀y : B∀Z∀f : A → Z∀g : B → Z. ([f, g]Z(inr(y)) = g(y))

With dinaturality we obtain:

Theorem 5 ∀Z∀h : A + B → Z. h = [inl ;h, inr ; h]Z

from which the usual categorical characterisation of binary sums follows.
Next we consider the action of binary sums on relations. Given ρ ⊂ A×A′ and σ ⊂ B×B′

we take (ρ + σ) ⊂ (A + B)× (A′ + B′) to be ∀Z. ((ρ → Z) → (σ → Z) → Z), following the
same pattern as for binary products.



Theorem 6
∀u : A + B∀u′ : A′ + B′.

u(ρ + σ)u′

≡
(∃x : A∃x′ : A′. (u = inl(x) ∧ u′ = inl(x′) ∧ xρx′)

∨
∃y : B∃y′ : B′. (u = inr(y) ∧ u′ = inr(y′) ∧ yσy′))

By the Identity Extension Lemma, eqA + eqB and eqA+B are equivalent. With this and
the above theorem we get that:

∀u : A + B. (∃x : A. u = inl(x)) ∨ (∃y : B. u = inr(y))

3.3 Existential Quantification

The existential quantification ∃X. A[X] is taken to abbreviate

∀Y. (∀X. (A[X] → Y ) → Y )

where Y does not appear in A and is different from X.
One defines the combinator pack : ∀X. (A[X] → ∃X.A[X]) and the combinator unpack :

(∃X. A[X]) → ∀Y. (∀X. (A[X] → Y ) → Y ) by:

pack(X)(x) = ΛY λf : ∀X. (A[X] → Y ). f(X)(x)

and
unpack(u)(Y )(f) = u(Y )(f)

and it is provable without using parametricity that

∀X∀x : A[X]∀Y ∀f : (∀X. (A[X] → Y ). (unpack(packXx)Y f =Y fXx)

Let us see how existential quantification operates on relations. Let ~Z be the type vari-
ables free in A[X, ~Z], other than X, and let ~ρ ⊂ ~B × ~C be a vector of relations of the same
length. Then ∃X. A[X, ~ρ] is taken to be ∀Y. (∀X. (A[X, ~ρ] → Y ) → Y ), following the usual
pattern. Using the parametricity schema, one can show:

Theorem 7
∀u : (∃X. A[X, ~B]), v : (∃X. A[X, ~C]).

u(∃X. A[X, ~ρ])v
≡

(∃X,Y ∃x : A[X, ~B], y : A[Y, ~C]∃S⊂X × Y.
u = (packXx) ∧ v = (packY y) ∧ x(A[S, ~ρ])y)

Applying the Identity Extension Lemma, we get:

∀~Z∀u, v : (∃X. A[X, ~Z]).
u = v
≡
(∃X, Y ∃x : A[X, ~Z], y : A[Y, ~Z]∃S⊂X × Y.

u = (packXx) ∧ v = (packY y) ∧ x(A[S, eq~Z ])y)

The implication from right to left can be viewed as stating that existentials are para-
metric (in a sense dual to that axiomatized for universals); it is a principle that enables one



to show that two abstract datatypes are equal, if one can demonstrate a simulation relation
between them. We view this as the proof principle requested by Mitchell in [Mit91].

Working from left to right, one obtains:

∀~Z∀u : (∃X. A[X, ~Z])∃X∃x : A[X, ~Z].(u = (packXx))

and one can then obtain a categorical characterization of existential quantification in the
form:

∀Y ∀f : (∀X. (A[X] → Y ))∃!g : (∃X. A[X] → Y )∀X. (fX =Y (packX); g)

3.4 Initial Algebras

Let A[Z] be a type where the variable Z occurs only positively. The initial A[Z] algebra is
given by

µZ. A[Z] = ∀Z. ((A[Z] → Z) → Z)

and the combinators are

fold : ∀Z. ((A[Z] → Z) → ((µZ. A[Z]) → Z))

and
in : A[µZ. A[Z]] → µZ. A[Z]

where:
fold(Z)(f) = λz : µZ. A[Z]. z(Z)(f)

and
in(z) = ΛZλf : A[Z] → Z. f(A[foldZf ]z)

.
The structure 〈µZ. A[Z], in〉 is a weakly initial A[Z] algebra:

∀Z∀f : A[Z] → Z. (in; (foldZf) = A[foldZf ]; f)

This can be shown without using parametricity (or any η-equalities). With parametricity
one has the following expression of the initiality of 〈µZ. A[Z], in〉:

Theorem 8 ∀Z∀f : A[Z] → Z∃!h : µZ. A[Z] → Z. (in; h = A[h]; f)

Turning to logical relations let ~X be a list of the type variables free in A[Z, ~X] apart
from Z and let ~ρ ⊂ ~B × ~C be a list of relations of the same length. Then the relation
µZ. A[Z, ~ρ] ⊂ µZ. A[Z, ~B]× µZ. A[Z, ~C] is taken to be ∀Z. ((A[Z, ~ρ] → Z) → Z), following
the usual pattern. Using parametricity one has:

Theorem 9

∀x : (µZ. A[Z, ~B])∀y : (µZ. A[Z, ~C]).
x(µZ. A[Z, ~ρ])y
≡
∀R⊂(µZ. A[Z, ~B])× (µZ. A[Z, ~C]).

(∀u : A[(µZ. A[Z, ~B]), ~B]∀v : A[(µZ. A[Z, ~C]), ~C].
uA[R, ~ρ]v ⊃ in(u)R in(v))
⊃

xRy



Put more informally, this theorem states that µZ. A[Z, ~ρ] is the least relation R such that
in(A[R, ~ρ]) ⊂ R.

Applying the Identity Extension Lemma to this theorem we obtain the following binary
induction principle for a relation ρ ⊂ µZ. A[Z, ~X]× µZ. A[Z, ~X]:

∀u, v : A[µZ. A[Z, eq ~X ], eq ~X ].
(uA[ρ, eq ~X ]v ⊃ in(u)ρ in(v))
⊃
∀x, y : µZ. A[Z, ~X]. xρy

This amounts to saying that, if in(A[ρ, eq ~X ]) ⊂ ρ then xρy holds for all x,y in µZ. A[Z, ~X].
It is somewhat surprising that we do not obtain the expected unary induction principle,
that, for any property (i.e. unary relation) π, if in(A[π, ∆1

~X
]) ⊂ π then π(x) holds for all x

in µZ. A[Z, ~X]. It would be interesting to know the relation between the two, and also with
the corresponding principles of other degrees.

3.5 Final Co-algebras

Let A[Z] be a type where the variable Z occurs only positively. The final A[Z] co-algebra
is given by

νZ. A[Z] = ∃Z. ((Z → A[Z])× Z)

and the combinators are

unfold : ∀Z. ((Z → A[Z]) → (Z → (νZ. A[Z])))

and
out : νZ. A[Z] → A[νZ. A[Z]]

where
unfold(Z)(f)(z) = pack(Z)(〈f, z〉)

and

out(u) = unpack(u)(A[νZ. A[Z]])

(ΛZλw : ((Z → A[Z])× Z). A[unfold Z(fst w)]((fst w)(snd w)))

The structure 〈νZ. A[Z], out〉 is a weakly final co-algebra:

∀Z∀f : Z → A[Z]. (unfold(Z)(f); out = f ; A[unfold(Z)(f)])

This can be shown without using parametricity (or any η-equalities). With parametricity
one obtains a characterization of 〈νZ. A[Z], out〉 as the final A[Z] co-algebra:

Theorem 10 ∀Z∀f : Z → A[Z]∃!h : Z → (νZ. A[Z]). (h; out = f ; A[h])

Turning to logical relations, let ~X be a list of the type variables free in A[Z, ~X] apart
from Z and let ~ρ ⊂ ~B × ~C be a list of relations of the same length. Then the relation
νZ. A[Z, ~ρ] ⊂ νZ. A[Z, ~B] × νZ. A[Z, ~C] is taken to be ∃Z. ((Z → A[Z, ~ρ]) × Z), following
the usual pattern.

Theorem 11

∀x : (νZ. A[Z, ~B])∀y : (νZ. A[Z, ~C]).
x(νZ. A[Z, ~ρ])y
≡
∃R⊂(νZ. A[Z, ~B])× (νZ. A[Z, ~C]).

xRy ∧ ∀x′ : (νZ. A[Z, ~B])∀y′ : (νZ. A[Z, ~C]).
x′Ry′ ⊃ out(x′)A[R, ~ρ]out(y′)



Put more informally,what this theorem states is that νZ. A[Z, ~ρ] is the greatest relation R
such that out(R) ⊂ A[R, ~ρ].

From this theorem and the Identity Extension Lemma one obtains the following principle
of co-induction (or bisimulation) [AM89, Smy91, Pit92]:

∀x, y : (νZ. A[Z]).
(∃R⊂(νZ. A[Z])× (νZ. A[Z]).

xRy ∧ ∀x′, y′ : (νZ. A[Z]). x′Ry′ ⊃ out(x′)A[R, eq ~X ]out(y′))
⊃
x = y

To put this in perhaps more familiar terms, say that R ⊂ (νZ. A[Z]) × (νZ. A[Z]) is a
bisimulation relation if out(R) ⊂ A[R, eq ~X ]. Then the principle of co-induction states that
equality is the maximal bisimulation relation. From previous work a binary principle is
expected here. There are also evident principles of other degrees. The unary principle is
logically trivial. Ternary and higher degree principles seem pointless; however we do not
know if they are equivalent to the usual binary one.
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