Skip to main content

Parallel implementation of a meteorological model on a SIMD architecture

  • 1. Industrial and General Applications
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1401))

Included in the following conference series:

Abstract

The implementation of the Meteorological Limited Area Model BOLAM on Quadrics, a SIMD massively parallel computer, is discussed. BOLAM is an explicit, primitive equations, hydrostatic, three-dimensional grid point model. The parallel version of this code, QBOLAM, will be one of the components of an integrated numerical system for the prediction of the state of the Mediterranean Sea. The performances of the dynamical core of QBOLAM are presented here. A maximum performance of 8.7 GFlopa sustained, corresponding to 34 % of the peak power, is measured on the 512 nodes machine. In the operational configuration (10 km, grid spacing, over an area of 8 – 106 km 2, 40 vertical levels, 128 nodes machine), the code reaches 2.1 GFlops sustained.

This work is funded by DSTN (Department of Italian National Technical Services).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The WAMDI group. The WAM model-A third generation ocean waves prediction model. J.Phys. Ocean., 18:1776–1810, 1988.

    Google Scholar 

  2. A.F. Blumberg and G.L. Mellor. A description of a 3-dimensional coastal ocean circulation model. In N.S. Heaps, editor, 3-dim coastal models, volume 4, pages 1–16. Coastal and Estuarine Science, 1987.

    Google Scholar 

  3. G. Umgiesser, J. Sundermann, and E. Runca. A semi-implicit finite element model for the Lagoon of Venice. In International Conference on Computer Modeling in Ocean Engineering, Venice, 19–23 Sept., 1988.

    Google Scholar 

  4. A. Buzzi, M. Fantini, P. Malguzzi, and F. Nerozzi. Validation of a limited area model in cases of mediterranean cyclogenesis: surface fields and precipitation scores. Meteorol. Atmos. Phys., 53:53–67, 1994.

    Google Scholar 

  5. A. Bartoloni et al. A hardware implementation of the APE100 architecture. International Journal of Modern Physics C, 4(5):969–976, 1993.

    Google Scholar 

  6. A. Kasahara. Various vertical coordinate systems used for numerical weather prediction. Mountly Weather Review, 102:509–522, 1974.

    Google Scholar 

  7. A. Arakawa. Computational design for long term numerical integration of equations of fluid motion: Two dimensional incompressible flow. Part I. J. Comput. Phys., 1:119–143, 1966.

    Google Scholar 

  8. P. Malguzzi and N. Tartaglione. An economical second order advection scheme for explicit numerical weather prediction. Submitted to QJRMS.

    Google Scholar 

  9. A.J. Gadd. A split explicit integration scheme for numerical weather prediction. QJRMS, 104:569–582, 1978.

    Google Scholar 

  10. F. Mesinger and A. Arakawa. Numerical methods used in atmospheric models. GARP Publication Series, WMO, 1(17), 1976.

    Google Scholar 

  11. F. Mesinger. Forward-backward scheme and its use in a LAM. Contrib. Atmos. Phys., 50:200–210, 1977.

    Google Scholar 

  12. J.F. Louis, M. Tiedtke, and J.F. Geleyn. A short history of the PBL parameterization at ECMWF. In ECMWF workshop on PBL parameterization, pages 59–80, Readings, 25–27 Nov., 1982.

    Google Scholar 

  13. J.K. Page. Prediction of solar radiation on inclined surfaces. D. Reidel Publishing Company, 1986.

    Google Scholar 

  14. P.M. Ruti et al. Intercomparison between BATS and LSPM surface schemes, using point micrometeorological data. Set. Beitr. Phys Atmos., pages 201–220, 1997.

    Google Scholar 

  15. A.K. Betts and M.J. Miller. A new convective adjustment scheme: Part II. QJRMS, 112:693–709, 1986.

    Google Scholar 

  16. Davies H.C. A later boundary formulation for multilevel prediction model. QJRMS, 102:405–418, 1976.

    Google Scholar 

  17. R. Lehmann. On the choice of relaxation coefficients for Davies' later boundaries scheme for regional weather prediction models. Meteorol. Atmos. Phys., 52:1–14, 1993.

    Google Scholar 

  18. A. Bartoloni et al. The software of the APE100 processor. International Journal of Modern Physics C, 4(5):955–967, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicastro, S., Valentinotti, F. (1998). Parallel implementation of a meteorological model on a SIMD architecture. In: Sloot, P., Bubak, M., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1998. Lecture Notes in Computer Science, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037142

Download citation

  • DOI: https://doi.org/10.1007/BFb0037142

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64443-9

  • Online ISBN: 978-3-540-69783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics