Skip to main content

Data Mining and the Keso project

  • Invited Papers
  • Conference paper
  • First Online:
SOFSEM'96: Theory and Practice of Informatics (SOFSEM 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1175))

  • 127 Accesses

Abstract

Data Mining and Knowledge Discovery is a young but vigorously growing research area. Its aim is to discover structure or knowledge in databases. It comprises a wide variety of algorithms and techniques for towards this goal.

One of the main challenges in building a data mining system is the flexibility necessary both to support the current variety of algorithms and to extend it easily with new kinds of data mining algorithms. In the Keso project this challenge is met by basing the system on an Inductive Query Language.

This research is supported by ESPRIT under contract 20.596

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1994.

    Google Scholar 

  2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), pages 207–216, May 1993.

    Google Scholar 

  3. C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

    Google Scholar 

  4. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.

    Google Scholar 

  5. P. Cheeseman and J. Stutz. Bayesian Classification (Autoclass): Theory and Results, pages 153–180. In Fayyad et al. [10], 1996.

    Google Scholar 

  6. B. S. Duran and P. L. Odell. Cluster Analysis, A Survey. Lecture Notes in Economics and Mathematical Systems, vol 100. Springer-Verlag, 1974.

    Google Scholar 

  7. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Monographs on Statistics and Applied probability, vol 57. Chapman & Hall, 1993.

    Google Scholar 

  8. U. M. Fayyad. Branching on attribute values in decision tree generation. In Proceedings of the 12th National Conference on Artificial Intelligence, pages 601–606. AAAI/MIT Press, 1994.

    Google Scholar 

  9. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge Discovery: An Overview, pages 1–34. In Fayyad et al. [10], 1996.

    Google Scholar 

  10. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

    Google Scholar 

  11. U. M. Fayyad and R. Uthurusamy, editors. AAAI-95 Conference on Knowledge Discovery and Data Mining, Montreal, Quebec, 1995.

    Google Scholar 

  12. A. Feelders. Learning from biased data using mixture models. In Simoudis et al. [31], pages 102–107.

    Google Scholar 

  13. W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge Discovery in Databases: An Overview, pages 1–27. In Piatetsky-Shapiro and Frawley [25], 1991.

    Google Scholar 

  14. J. Friedman and J. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computing, C-23:881–889, 1974.

    Google Scholar 

  15. J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Networks. Santa Fe Institute Lecture Notes vol 1. Addison-Wesley, 1991.

    Google Scholar 

  16. M. Holsheimer, M. Kersten, and A. Siebes. Data surveyor: Searching the nuggets in parallel. In Fayyad et al. [10].

    Google Scholar 

  17. P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.

    Google Scholar 

  18. W. Klösgen. Explora: A multipattern and multistrategy discovery assistent. In Fayyad et al. [10].

    Google Scholar 

  19. J. R. Koza. Genetic programming, volume 1. MIT Press, 1992.

    Google Scholar 

  20. J. R. Koza. Genetic programming, volume 2. MIT Press, 1994.

    Google Scholar 

  21. H. Mannila and K.-J. Räihä. Algorithms for inferring functional dependencies from relations. Data and Knowledge Engineering, 12:83–99, 1994.

    Google Scholar 

  22. K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Probability and Mathematical Statistics. Academic Press, 1979.

    Google Scholar 

  23. C. J. Mateus, G. Piatetsky-Shapiro, and D. McNeill. Selecting and reporting what is interesting: The kefir application to healthcare data. In Fayyad et al. [10].

    Google Scholar 

  24. D. Michie, D. Spiegelhalter, and C. Taylor, editors. Machine Learning, Neural and Statistical Classification. Ellis Horwood series in Artificial Intelligence. Ellis Horwood, 1994.

    Google Scholar 

  25. G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge Discovery in Databases. AAAI Press, Menlo Park, California, 1991.

    Google Scholar 

  26. J. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

    Google Scholar 

  27. J. Quinlan. Probabilistic decision trees. In Y. Kodratoff and R. Michalski, editors, Machine Learning: An Artificial Intelligence Approach, Vol 3. Morgan Kaufmann, 1990.

    Google Scholar 

  28. B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

    Google Scholar 

  29. A. Siebes. Data surveying, foundations of an inductive query language. In Fayyad and Uthurusamy [11], pages 269–274.

    Google Scholar 

  30. A. Siebes. On the inseparability of data mining and statistics. In Proceedings of the Mlnet Familiarization Workshop: Statistics, Machine Learning and Knowledge Discovery in Databases, 1995.

    Google Scholar 

  31. E. Simoudis, J. Han, U. M. Fayyad, and R. Uthurusam, editors. AAAI-96 Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996.

    Google Scholar 

  32. J. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

    Google Scholar 

  33. D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical Report SFI-TR-95-02-10, The Santa Fe Institute, Februari 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith G. Jeffery Jaroslav Král Miroslav Bartošek

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebes, A. (1996). Data Mining and the Keso project. In: Jeffery, K.G., Král, J., Bartošek, M. (eds) SOFSEM'96: Theory and Practice of Informatics. SOFSEM 1996. Lecture Notes in Computer Science, vol 1175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037403

Download citation

  • DOI: https://doi.org/10.1007/BFb0037403

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61994-9

  • Online ISBN: 978-3-540-49588-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics