Abstract
We will present an overview of a number of related modern iterative methods for the solution of unsymmetric linear systems of equations. We will show how these methods can be derived from simple basic iteration formulas, and how they are related to each other.
Special attention will be given to hybrid methods, such as Bi-CGSTAB, Bi-CGSTAB(ℓ), and GMRESR. We will emphasize implementation aspects, in particular in view of parallel processing. In general, preconditioning poses additional problems with respect to parallel processing, and we will discuss this aspect as well.
Preview
Unable to display preview. Download preview PDF.
References
W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenproblem. Quart. Appl. Math., 9:17–29, 1951.
O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of equations. Lin. Alg. and its Appl., 29:1–16, 1980.
O. Axelsson and P. S. Vassilevski. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning. SIAM J. Matrix Anal. Appl., 12(4):625–644, 1991.
Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA J. Numer. Anal., 14:563–581, 1991.
R. E. Bank and T. F. Chan. An analysis of the composite step biconjugate gradient method. Num. Math., 66:295–319, 1993.
R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.
G. Brussino and V. Sonnad. A comparison of direct and preconditioned iterative techniques for sparse unsymmetric systems of linear equations. Int. J. for Num. Methods in Eng., 28:801–815, 1989.
A. T. Chronopoulos and C. W. Gear. s-Step iterative methods for symmetric linear systems. J. on Comp. and Appl. Math., 25:153–168, 1989.
L. Crone and H. van der Vorst. Communication aspects of the conjugate gradient method on distributed-memory machines. Supercomputer, X(6):4–9, 1993.
J. Cullum and A. Greenbaum. Relations between Galerkin and norm-minimizing iterative methods for solving linear systems. SIAM J. Matrix Analysis and Appl., 17:223–247, 1996.
E. de Sturler. A parallel variant of GMRES(m). In R. Miller, editor, Proc. of the fifth Int.Symp. on Numer. Methods in Eng., 1991.
E. De Sturler. Iterative methods on distributed memory computers. PhD thesis, Delft University of Technology, Delft, the Netherlands, 1994.
E. De Sturler and H.A. Van der Vorst. Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers. J. Appl. Num. Math., 18:441–459, 1995.
J. Demmel, M. Heath, and H. Van der Vorst. Parallel numerical linear algebra. In Acta Numerica 1993. Cambridge University Press, Cambridge, 1993.
J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.
H. C. Elman. Iterative methods for large sparse nonsymmetric systems of linear equations. PhD thesis, Yale University, New Haven, CT, 1982.
V. Faber and T. A. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Analysis, 21(2):352–362, 1984.
R. Fletcher. Conjugate gradient methods for indefinite systems, volume 506 of Lecture Notes Math., pages 73–89. Springer-Verlag, Berlin-Heidelberg-New York, 1976.
R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput., 14:137–158, 1993.
R. W. Freund and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2. Technical Report 90.46, RIACS, NASA Ames Research Center, 1990.
R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. Num. Math., 60:315–339, 1991.
G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989.
K. C. Jea and D. M. Young. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Lin. Algebra Appl., 34:159–194, 1980.
C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand, 49:33–53, 1952.
N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl., 13:778–795, 1992.
B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp., 44:105–124, 1985.
C. Pommerell and W. Fichtner. PILS: An iterative linear solver package for illconditioned systems. In Supercomputing '91, pages 588–599, Los Alamitos, CA., 1991. IEEE Computer Society.
G. Radicati di Brozolo and Y. Robert. Parallel conjugate gradient-like algorithms for solving sparse non-symmetric systems on a vector multiprocessor. Parallel Computing, 11:223–239, 1989.
Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14:461–469, 1993.
Y. Saad and M. H. Schultz. Conjugate Gradient-like algorithms for solving non-symmetric linear systems. Math. of Comp., 44:417–424, 1985.
Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.
G. L. G. Sleijpen and H.A. Van der Vorst. Maintaining convergence properties of BICGSTAB methods in finite precision arithmetic. Numerical Algorithms, 10:203–223, 1995.
G. L. G. Sleijpen, H.A. Van der Vorst, and D. R. Fokkema. Bi-CGSTAB(ℓ) and other hybrid Bi-CG methods. Numerical Algorithms, 7:75–109, 1994.
G. L. G. Sleijpen and D. R. Fokkema. BICGSTAB(ℓ) for linear equations involving unsymmetric matrices with complex spectrum. ETNA, 1:11–32, 1993.
P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 10:36–52, 1989.
K.H. Tan. Local coupling in domain decomposition. PhD thesis, Utrecht University, Utrecht, the Netherlands, 1995.
H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631–644, 1992.
H. A. Van der Vorst and C. Vuik. GMRESR: A family of nested GMRES methods. Num. Lin. Alg. with Appl., 1:369–386, 1994.
P. K. W. Vinsome. ORTOMIN: an iterative method for solving sparse sets of simultaneous linear equations. In Proc.Fourth Symposium on Reservoir Simulation, pages 149–159. Society of Petroleum Engineers of AIME, 1976.
T. Washio and K. Hayami. Parallel block preconditioning based on SSOR and MILU. Numer. Lin. Alg. with Applic., 1:533–553, 1994.
D. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van der Vorst, H.A. (1996). Iterative methods for unsymmetric linear systems. In: Jeffery, K.G., Král, J., Bartošek, M. (eds) SOFSEM'96: Theory and Practice of Informatics. SOFSEM 1996. Lecture Notes in Computer Science, vol 1175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037406
Download citation
DOI: https://doi.org/10.1007/BFb0037406
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61994-9
Online ISBN: 978-3-540-49588-8
eBook Packages: Springer Book Archive