
20 An Iteration Partition Approach for
Cache or Local Memory Thrashing
on Parallel Processing
J. Fang
Hewlett-Packard Laboratories
M. Lu
Texas A&M University

Abstract
Parallel processing systems with cache or local memory in the memory hierar-
chies have become very common. These systems have large-size cache or local
memory in each processor and usually employ copy-back protocol for the cache
coherence. In such systems, a problem c~lled "cache or local memory thrash-
ing" may arise in executions of parallel programs, when the data unnecessarily
moves back and forth between the caches or local memories in different proces-
sors. The techniques associated with parallel compilers to solve the problem are
not completely developed.

In this paper we present an approach to eliminate unnecessary data moving
between the caches or local memories for nested parallel loops. This approac~
is based on relations between array element accesses and enclosed loop indexes
in the nested parallel loops. The relations can be used to assign processors
to execute the appropriate iterations for parallel loops in the loop nests with
respect to the data in their caches or local memories. An algorithm to calculate
the correct iteration of the parallel loop in terms of loop indexes of the previous
iterations executed in the processor is presented in the paper, even though there
is more than one subscript expression of the same array variable in the loop.

This method benefits parallel code with nested loop constructs in a wide range of
applications, in which the array elements are repeatedly referenced in the parallel
loops. The experimental results show that the technique is extremely effective -
capable of achieving double speedups over application programs such as Linpack
benchmarks.

1. I n t r o d u c t i o n

In recent years, shared memory parallel processing systems with complicated memory hierarchies
have become very common. For instance, cache is usually introduced as a means to bridge the
gap between fast processor cycles and slow main memory access time in hardware design. Most
parallel processing systems have local cache in each processor in the memory hierarchies, and
some of them use more than one level of cache to enhance the cache bandwidth. In general,
a copy-back cache protocol is employed to maintain cache coherence in these parallel process-
ing systems, and the size of the cache memory becomes larger and larger. Another example in

1Supported by the National Science Foundation under grant no. MIP 8809328.

314

some supercomputing systems is local memory (or programmable cache), which stores copies of
frequently used data and local variables. In order to avoid hot spot contention in the intercon-
nection network, some supercomputer systems include secondary local memory in the memory
hierarchy for a small cluster of processors. In such multiprocessor systems, the memory access
time from a processor to its own cache or local memory is much faster than the time either
to the global memory or to the caches or local memories in other processors. When executing
parallel code, the frequently used data may be shared by multiple processors, which may run the
multiple threads for a parallel program at the same time. The local cache may result in severe
inemciendes when a parallel code requires data moving back and forth between processors. This
phenomena is called %ache or local memory thrashing" in shared memory parallel processing
systems. The cache or local memory thrashing degrades the system performance.

Although great efforts have been devoted to developing compilers to take advantage of parallel
processing systems, the techniques associated with parallel compiler to solve the "cache or local
memory thrashing" problem are not completely developed yet. The parallel compiler concepts
underlying Illinois PARAFRASE compiler [11] and Rice Parallel Fortran Converter [2] are based
on the shared memory multiprocessor architecture, in which a large memory block is assumed to
be directly addressahle by all processors, and the memory access time from different processors
is assumed to be the same [13].

Most of research work, which attempts to enhance the cache hit ratios, focuses on improving
of the data localities by restructuring the original program at compiler time. These research
results can be used for uniprocessor and multiprocessor systems. Early researchers in this area
studied similar phenomena in virtual memory systems. In [1] W. Abu-Sufah, D. Kuck, and
D. Lawrie presented a few source program transformation techniques that improve the paging
behavior of programs. These transformations, called "loop-blocking', consist of hreaking iterative
loops into smaller loops (strip-mining) and then recombining and reindexing these smaller loops
(loop-fusing and loop-interchange). Following the spirit of [1], a lot of different loop-blocking
algorithms have been developed for different computer architectures. These modified blocking
algorithms, such as "loop-tiling" [14] and "loop-jam" [6], are able to take advantage of cache
or local memory, because there is a high degree of data reuse during computing within a block.
But for most of the application code with complicated program constructs, the benefit of the
blocking algorithms is very limited.

In this paper we present an approach to eliminate, at least to reduce, the "cache or local
memory thrashing" problem. The technique benefits parallel programs with complicated parallel
constructs in a wide range of applications, in which parallel loops are enclosed by a serial loop
and the array elements are frequently reused in the parallel loops in different iterations of the
enclosed serial loop. The technique calcdlates the appropriate parallel loop indexes for each
processor in terms of the data stored in its cache or local memory, then reduces unnecessary data
moving between caches or local memories in the systems.

To compute the appropriate loop index, a mathematical concept is introduced in this paper
to define the relations between the array element accesses and the enclosed loop indexes in nested
parallel constructs. The relations determined by the array subscript expressions can be used to
partition an iteration space into equivalence classes. All vectors of the iteration space in an
equivalence class may access some common array elements. The concept helps to develop a
method to find the next vector in an equivalence class in terms of the previous vectors in the
same equivalence class.

315

The rest of the paper is organized as foltows. In section 2, the cache or local memory thrashing
problem on our simple machine model is introduced. In section 3, the programming model that
we focus on in the paper is discussed. In section 4, the results in a simple case, which has only
single array subscript expression, are described first. Then these results are extended to the
more complicated case with multiple subscript expressions. In section 5, the application of the
results to parallel compiler is presented. The experimental results are shown that this technique
is extremely effective for some application programs in section 6. In section 7, we conclude our
discussion.

2. B a c k g r o u n d

2.1 M a c h i n e M o d e l

A simple shared memory parallel processing system model is comprised of a number of processors
and a global memory, which are connected by data-bus, crossbar or interconnection network. The
system provides a set of synchronization primitives to support concurrent execution of multiple
threads in parallel program constructs. These synchronization primitives can be fetch/increment
or semaphore instructions.

To match fast processor speed, the~system has caches or local memories incorporated in its
memory hierarchy. To simplify our presentation, we ignore other complicated considerations in
hardware cache design[3/. The cache design in the simple shared memory parallel processing
system model has the following characteristics:

(1) It is local to a processor.
(2) Its size is large enough.
(3) It uses copy-back coherence strategy.
(4) Its line size is one word.
(5) It has only one level.

A more complicated machine model can be viewed as an extension of the simple model with
more levels of local memories in the memory hierarchy, such as the CEDAR supercomputer[10].
The approach presented in this paper can be extended to the complicated machine model by
analyzing multi-level parallel loops in nested parallel constructs.

2.2 C a c h e or Loca l M e m o r y T h r a s h i n g P r o b l e m
In a parallel program, the execution of a piece of code specified by parallel constructs is called a
t h r e a d [12]. A thread can be viewed as a unit of work that is programmer-defined or parallel-
compiler-specified in parallel program constructs. Parallel-loop is the most common parallel
construct, which can be viewed as a straightforward parallel version of the conventional DO-
loop: a thread is the execution of an iteration (or a chunk of iterations if we use strip-mining or
other techniques) of the loop, and the threads spawned on entering the parallel-loop merge at
the end of the loop. The order in which the iterations of the loop are performed is arbitrary. For
example, consider the following program:

DIMENSION B(200), A(1000, 1000)
DO I = 1,100

B(I) = A(I,I) - B(I-1)
X = I . 0
P D O J - - I, 100

X = A(I,J) * B(I)
DO K -- 1, 100

S: A(I§ I+3+3"K) = A(I§247 I§247 - X

316

END DO
A(J,J) = A(J,J) + X

END PDO
END DO

There are one hundred threads spawned by the parallel loop in the example if each iteration
of the loop is a thread. In general, each thread in a parallel loop is determined by the body of
the loop and the indexes of its enclosed loops, which can be either serial or parallel.

When programs with nested parallel loops axe executed~on multiprocessor systems, some
frequently used data may be repeatedly used and modified by different threads for the nested
loops. If the threads, which may access the same data, are not assigned to the same processor,
the data may be unnecessarily moved back and forth between the caches in the systems. This
phenomena is called cache or local m e m o r y th rash ing in shared memory parallel processing
systems.

In the above example the statement S doesn't have data dependence in the DO J loop by
increment-Ba~nerjee test [4]. If there is not other loop-carried dependence between statements of
the loop body, the J loop can be paraJlelized. There are a total of 10,000 threads TI,J in the
execution of the parallel loop. Each thread requests 100 elements of array A. Many of the array
elements axe repeatedly referenced in these threads.

For instance, thread T1,1 requests data

A(8,5), A(13,8), A(18,11), A(23,14), , A(498,299), A(503,302)
for the innermost serial loop index K from 1, ..., 100 respectively.

Meanwhile, thread T2,3 requests data

A(13,8), A(18,11), A(23,14),, A(498,299), A(503,302), A(508,305)

and thread T3,s requests data

A(18,11), A(23,14), , A(503,302), A(508,305), A(513,308).

It can be observed that there exists a set of threads: T1,1, T2,3, T3,5, T4,7,, T49,99, which
reuse most of the array elements referenced in the previous thread. If the threads of the set
are assigned to different processors, the data of array A are unnecessarily moved back and forth
between caches or local memories in the system.

3. P r o g r a m m i n g M o d e l For C a c h e or Loca l M e m o r y T h r a s h i n g So lu t i on

3.1 Pre l iminar ies

In this section, the preliminary concepts relevant to the iteration space and data dependence
analysis are reviewed and the notations used in this paper are introduced. Standard definitions
are used to analyze the array accesses [2, 13, 6]. Considering a nested parallel construct of k
loops with an array A of dimension d, the i te ra t ion space denoted as C is defined by the
product [-[4 j=l Nj , where Nj is the range of the index in loop j, [Lj : Uj], where L i and U i
are the low bound and up bound in the loop j respectively. The domain space denoted as D is
defined by the product d 1-Ii=l Mi , where Mi is the size of array A in the i-th dimension. Any
array subscript expressions in statements of a parallel nested loop can be more precisely defined
by h ,g : C - ~ D .

There exists a total order in the iteration space C that is defined by the point in time at
which the element is executed. We say that a vector t is greater than a vector s, where

317

t = (h,t~,...,tk) and

S ~ (8 1 , 8 2 , . . . , 8 k) ,

if there is a point m, which is from 1 to k, such that ti = s~ for i < m and t m > s~n.

The standard data dependence definition in [11, 13, 5] is given as follows. If two statements
access the same memory location, we say that there is a data dependence between them. A flow
d e p e n d e n c e from a statement $1 to a statement $2 exists if a variable is computed in $1 and
is later referenced and used in $2. An an t idependence from $1 to $2 exists if a variable is
referenced by $1 before it is rewritten by $2. An o u t p u t dependence or input dependence
from $1 to $2 exists if both statements write or read the same memory location respectively.

3.2 S tudy of P r o g r a m S t ruc tu re s in Appl ica t ions

We have studied a broad range of application programs including well-known Linpack and Perfect
benchmarks. A profile software tool, which is able to obtain statistic information at execution
time such as the percentage of runtime for each subroutine and the percentage of each loop in
a subroutine for a benchmark, was very helpful in our study. A parallel compiler with inter-
procedural analysis helps us also to explore program constructs containing subroutine calls. In
the study, we assume that only one-level loops are parallel or there are multi-level parallel loops
but only one-level loops are parallelized in the parallel loop nests. It is reasonable to match
our simple machine model in section 2, which doesn't introduce the hardware processor cluster
concept.

In our study, the nested loop constructs may contain subroutine calls in the loop body. The
subroutine may have loop nests containing other subroutine calls. Since both Linpack and Perfect
benchmarks are written in standard Fortran, there are no recursive calls in our benchmarks.
Table 1 lists the number of loop nests and the most time-consuming loop nests in 11 perfect
benchmarks.

Benchmark

ADM (APS.f)
ARC2d (SRS.f)
BDNA (NAS.f)
DYFESM (SDS.f)
FLO52 (TFS.f)
MDG (LWS.f)
OCEAN (OCS.f)
qCD (LGS.f)
SPICE (CSS.f)
TRACKER (MTS.f)
TRFD (TIS.f)

Number of Loop Nests
Total I Parallel
186 146
156 141
183 103
156 91
115 96
36 30
89 65
124 88
341 41
65 47
32 29

Time-Consuming Loop Nests
T~ I Percentage I Parallel

26% 2
44% 8
56% 3
65% 4
53% S
85% 0
33% 0
22% 0
49% 0
41% 0
88% 3

Table 1: Nested Loops in Perfect Benchmarks

In the study, we focus on the most time-consuming nested loops, each of which requires
at least 3% of the execution time. By using parailel/vectorized compiler with interprocedural
analysis, the parallel loops are interchanged to the outer levels even cross the subroutine call
boundary, if it is possible. The serial loop, which immediately encloses the parallel loop after
loop-interchange, is called w r a p loop. The serial loop, which is immediately enclosed by the

318

interchanged parallel loop, is called enel loop. Table 2 illustrates the loop structure of the time-
consuming parallel loop nests in Perfect benchmarks. It shows the number of time-consumlng
parallel loops, the wrap loop, the number of loop levels, the level of parallel loops, the end serial
loops and the percentage of execution time required by the parallel loops.

Benchmark

Linpack
ADM (APS.f)

AttC2d (SRS.f)

BDNA (NAS.f)

DYFESM (SDS.f)

FL052 (TFS.f)

QCD (LGS.f)
TRFD (TIS.f)

I 'rot I Wraprp I I,v ' I
1 #134 3
2 #4320 6

#4729 6
8 #2155 4

4
4

#2310 4
4
4

#313 3
3

3 #238 3
3
3

4 #6845 5
5

#698 7
#796 7

8 #8i4 4
4
4
5
4
5
5
5

I #1138 14~ [1
3 #279 6 '

#338 _ _ _

ParLp I ParLvl I EncILp
#161 2
#4453 5
#4858 5
#2165 3 #2165
#2215 3 #2218
#3144 3 #3145
#2348 3 #2350
#2366 3 #2367
#3722 3 #3723
#2723 2 #2724
#2783 2 #2784
#3546 2 #3548
#3061 3
#3088 3
#875 4 #877
#891 4 #893
#4358 5 #4362 #4265
#4513 5 #4514 #4518
#880 3 #879
#904 3 #903
~1014 3 #1o13
~1027 4 #1025
~tIO40 3 #1039
~1053 4 #1051
~1269 4 #1264
/~1278 4 #1265

1144 14
#285'" t 5 #289
#300 I 5 #303

6 #350

#325
#4454 16%
#4859 11%

Percentage

49%

7%
7%
5%
5%
5%
4%
5%
4%
36%
10%
10%
10%
10%
35%
11%

5%
10%
4%
10%
5%
7%
7%
22%
35%
30%
23%

Table 2: Parallel Loops in Nested Constructs in Perfect Benchmarks

From the table, it can be seen that most of the time-consuming parallel loops in the bench-
marks are in the middle level of the loop nests (or can be interchanged to the middle level). They
enclose at least one level serial loop. The serial wrap loop usually encloses more than one parallel
loop. For instance, in FLO52 a serial loop #874 encloses all time-consuming parallel loops of
the benchmark. In our study, we noticed that most of the non-time-consuming parallel loops
have such constructs also, which are contained by some serial wrap loop and may enclose other
serial loops. The array access patterns in the parallel loops are studied for such nested parallel
nested constructs. We concentrated on the major array variables with largest sizes, which have

319

to be bigger than the size of cache memory.

In the study, we noticed that most of the major arrays are two-dimensional. Some of them
have three dimensions, but one dimension is always a constant in the time-consuming loop nests.
These three-dimension arrays can be considered to be two-dimension arrays also.

A loop-alignment technique [5] in parallel/vectorized compiler was used to transform the array
expressions into the same form for the different parallel loops enclosed by the same wrap loop
in the same format. Especially, we pay attentions on a phenomena called inheren t th rash ing
in our study, which is similar to the alignment conflict condition in [5]. The inherent thrashing
phenomena may happen in the parallel loop nests with multiple major arrays. Let's check a
parallel loop nest with arrays A and B. Suppose that A is assigned and B is used in the first
parallel loop, B is assigned and A is used in the second parallel loop, and these parallel loops are
enclosed by the same wrap loop. If the expressions of A and B are different or they cannot be
aligned due to the alignment conflict, then there always exists cache or local memory thrashing
for array A or array B at the execution of the common serial wrap loop. Actually, it is easy
for parallel compilers to detect the inherent thrashing condition between two major arrays by
checking the dependence graph. Fortunately, we did not find any inherent thrashing loop in the
time-consuming parallel nests in the Perfect benchmarks.

L e m m a 1. For a pair of array variables with loop-independent flow dependence in two
parallel loops, which are enclosed by the same wrap loop, if there exists a cycle of flow dependence
edges carried by the wrap loop between the variables in dependence graph, and the array subscript
expressions are not the same or cannot be aligned to the same, then the array variables is called
inherent th rash ing .

3.3 P r o g r a m m i n g Mode l

In this section, we define a programming model, which represents certain types of parallel loop
nests that are encountered very often in a wide range of applications and easy to be identified
by paraUel/vectorized compilers.

Based on the results of study shown in the previous section, if the cache or local memory
thrashing is eliminated at the execution of the wrap loop, the speed up of the benchmarks will
be significantly enhanced. In this paper, we present a solution to eliminate, or at least to reduce
the cache or local memory thrashing on a common program construct in benchmark analysis: a
serial wrap loop encloses parallel loops and each of the parallel loops may contain one or more
serial loops. The loop constructs are not necessary to be perfect nested. Scalar code can be
contained in the wrap loop or in the parallel loop. To simplify our presentation, we assume that
there exists only one major array variable A. The results in the paper can be easily extended to
the same program model with multiple major arrays, if they do not satisfy the inherent thrashing
condition.

The programming model for the solution of the cache or local memory thrashing has the
following characteristics:

1. It has a serial wrap-loop in the outermost level, denoted as DO Loop i , which cannot be
distributed in that level.

2. There are only one level loops parallel (or paralle]ized) denoted as P D O Loop j in the loop
nest, which are immediately enclosed by the wrap-loop.

3. The parallel loops may contain serial loops after loop-interchange. The immediately enclosed

320

serial'loop, named end-loop, is denoted as DO Loop k. The end-loop k may be an empty loop.

4. It may be a non-perfectly nested loop construct and have arbitrary IF-THEN-ELSE structure.
Loop bounds are not necessary to be constants.

5. Only one two-dimensional major array variable A is in the loop nest, which has linear
subscript expressions in terms of the indexes of wrap-loop, parallel loop and end-loop after
induction variable replacement.

6. The array A may have more than one expression in a parallel loop, but it has to have the
same expressions in the different parallel loops after loop-alignment.

We assume that there are r different subscript expressions on the two dimension array A[1..D1,
1..D2]. These expressions are linear functions fra and gm respectively in column and row:

fm(i~,k) = arn,li + bTa.lj +cm,lk + d~n,1 and

g,~(ij,k) = am,2i + b~n,2j +cm,2k + din,2.

These linear functions f, g: Z 3 --+ Z 2 are mapping from N • M • L to D~ x D2, where N =
U~r~p - L~ra~ is the loop bound of the serial wrap loop, M = ma~(Up~l - L p ~ l , Upon2 - Lp~2)
is the maximal number of the parallel loop bounds if there are t parallel loops contained by the
wrap loop, and L = max(Uencll - L e ~ 1 1 , Uenc12 - Le,~c12, Ue~c2 - L~ , ,~) is the maximal number
of the serial enclosed loops if there are s enclosed loops contained by the parallel loops.

We studied lots of scientific computation benchmarks such as mechanical CAE, structural
analysis, fluid dynamics, heat transfer, computational chemistry, petroleum, and geographic
applications. Most of the time-consuming parallel loop nests in the benchmarks have very similar
characteristics with the programming model.

To compare with other approaches to eliminate or reduce the cache or local memory thrash-
ing problem, we must mention blocking algorithms. Several research groups demonstrated the
effectiveness of blocking algorithms for shared memory multiprocessors with memory hierarchies
[7]. In general, a blocking algorithm needs to partition the array variables and broadcast the
blocks to several processors if they reference data in the blocks for different iterations. In our
program model, the wrap loop in the model is serial and cannot be distributed. The entire array
is referenced in each iteration of the outermost serial loop. We have to rewrite the programs to
use blocking algorithms. The approach presented in this paper can be applied in automatic par-
allel compilers and runtime library support. It doesn't require programs to rewrite application
programs like most of the blocking algorithms.

The nature of the cache or local memory thrashing can be described in the following way.
When a serial outermost wrap-loop encloses several parallel loops, the dependences carried by the
serial loop may cause the data moving back and forth between threads that execute the iterations
of the parallel loops in the different iterations of the outer serial loops. Some array elements may
be reused in the different iterations of the serial loop due to the loop-carried dependences in the
loop. Meanwhile, these array elements need to be moved in the caches or local memories between
processors in each iteration of the serial loops due to the parallel loops.

4. M a i n R e s u l t s

4.1 An I m p o r t a n t L e m m a

In the program model described in Section 3.3, the linear array subscript expressions can be
used to partition the set of the pairs of wrap-loop index and the parallel loop index. The linear

321

functions fr~ and g,n, where m is from i to r, specify a map from the reduced i terat ion space,
N x M, to the set of subsets of the d o m a i n space.

f, g: N X M ~ 2 Dl xD~.

In section 4.1 and 4.2, we discuss the simple case, where only one array subscript expression
exists in the parallel construct. The subscript m for functions and coefficients can be omitted in
the simple case. Then the results will be extended to the multiple expressions in section 4.3.

In the program model shown in section 3.3 with only one expression in the parallel construct,
we define a set of elements of array A, which are accessed within thread Tio,jo as follows.

Def in i t ion 1. For a given pair io and Jo, the set of elements A(/(io, 3"0, k), g(io, jo, k)) of
array A, which are accessed within thread TioJo , is denoted by Aio,jo , Where 1 < k < L.

Ai0,j0 = {A(f (io, Jo, k), g (io, jo , k))] for given i0 and j 0 , where k e [1, L]}.

Since both f and g are linear in terms of i, j, and k, the following lemma is obvious and useful
in the rest of this section.

L e m m a 2.: In a loop construct in the programming model described above, if there exist
two points in iteration space, (i, j, k) and (i', j ' , k'), such that

/ (i , j, k) = / (i ' , j ' , k')

and

g(i, j, k) = g(i', j ' , k'),

then for any constant no, we have a series of points in the space, (i, j, k + no) and (i', j ' , k' +
no) satisfying the following equations:

f (i , j, k+n0) = f(i ' , j ' , k '+n0)

and

g(i, j, k+n0) = g(i', j ' , k '+n0)

w h e r e l < k ' + n o < L a n d l < _ k + n o _ < L .

It is clear from Lemma 2 that if
A!m! f] A(m! ~ @,

~1,31 ~

then threads Sq J1 and Si~,j2 should be assigned to the same processor, because they may access
some common elements of array A.

4.2 Resu l t in Single E x p r e s s i o n

Lemma 2 in the previous section can be used to collect a set of loop index pairs (i j) , whose
corresponding threads may reuse some elements of array variable A. The following theorem
provides an efficient method to compute the parallel loop index from the current outer serial
loop index and the previous parallel loop index in such a way that the thread to execute the
current parallel loop iteration may access some array elements that were accessed in the thread
of the previous parallel loop iteration within the previous serial loop iterations.

T h e o r e m 1. In the program model described in Section 3.3, we have two points (ij ,k) and
(i',j ' ,k') in iteration space such that

f(i j ,k) = f(i',j ',k') and

g(i,j,k) = g(i',j ',k'),

322

if they satisfy the following condition:

i ' - i = blc2 - b 2 c l

j - j ' = alc2 - a2cl

k - k ' = a2bl - alb2.

Let us denote: a = blc2 - b2cl

/3 .= alC2 - - a2cl

" / = a2bl - alb2.

From a, fl, 7, we can compute a set of points in the reduced iteration space for a given pair
(/0,j0). The threads corresponding to these points may access some common array elements at
execution time. By a, /3 , 7 and the loop low bounds, it is easy to calculate the initial points for
each set from which the following points can be computed from Theorem 1.

To prove that the sets of points in the reduced iteration space specified by Theorem 1 can
partition the space, we give the following definition.

Def in i t ion 2. In the programming model described in Section 3.3, for a given pair io and
Jo, Sio,Jo denotes a set of points (i , j) in the reduced iteration space of size N x M, which satisfy
the following condition:

Sio,jo = {(i ,J) I Aio,jo Cl ni , j • ~ } .

By Lemma 1 given in the previous section, the definition can be described as:

Sio,j0 = {(i ,J) I there is k0 and k such that f (i o , j o , ko) = f (i , j , k) and g(io, jo, ko) = g (i , j , k) } .

T h e o r e m 2. In the programming model in Section 3.3, S~,j is an equivalence class in the
reduced iteration space N • M. Therefore the relation defined in Theorem 1 partitions the
reduced iteration space.

By Theorem 2, the thread corresponding to a point of an equivalence class never accesses
the element of array A, which is accessed in the threads corresponding to the points of the
different equivalence classes. This means that if the threads corresponding to the points of an
equivalence class are not assigned to the other processor, there is no unnecessary data moving
between processors for array A. Of course, additional execution time is required to compute the
current parallel loop index in terms of the current serial wrap-loop index, the previous wrap-loop
and parallel loop indexes.

4.3 R e s u l t s in M u l t i p l e E x p r e s s i o n Case

In this section we discuss complicated case in which there are multiple expressions in the parallel
loops of the programming model described in Section 3.3. As shown in Section 4.2, each linear
function gives a particular value of a, /~, and 7 by Theorem 1.

Section 4.2 gave the definition of a set of points (i j) in the reduced iteration space, Si0,Jo, in
which each point may access some elements of array A that are referenced in thread Tio,Jo for

given (io , jo) .

This definition can be rewritten below, where the superscript (1) indicates that only one
linear subscript expression is in the parallel loops.

S!D = {(i , j) l i = i 0 + p • = j 0 + p •
~0~30

323

Now we extend the definition from one linear expression to multiple linear expressions in the
parallel loop. As shown in the program model in Section 3.3, there is more than one subscript
expression for a major array variable in the parallel loops. Assume the number of the differ-
ent array subscript expressions is r. By Theorem 1, we have a list of m triples: (a1,~1,71),
(a ~ , ~ , ~) , , (~ , ~ r , ~ r) .

The set of points in the reduced iteration space defined as follows can be viewed as an
extension of the equivalence class defined in section 4.2. If the relationship defined by Definition
3 can partition the reduced iteration space, then the corresponding threads may access some
common elements of the array or arrays that are stored in the local cache by thread T~0,j0 for

given i0, j0.

Definit ion 3. In reduced iteration space of wrap-loop i and parallel loop j, there are r
different subscript expression for a major array variable. The set of the pairs of i and j , whose
corresponding threads may access some common elements of the array or arrays that are stored
in the local cache by thread T~o,j0, is defined as S~!j o.

= : i0+E,m• : j0+Epm• f o r , l ,

The following Theorem shows that the relation defined in the above definition can partition
the reduced iteration space. If all threads corresponding to the points Si,j are assigned into the
same processor, the processor never accesses any data in the caches or local memories of the
other processors. Therefore, we can reduce the unnecessary data moving between processors and
improve the system performance.

Theorem 3. S!~!j 0 is an equivalence class in the reduced iteration space of loop i and loop j .

By Theorem 1 and Definition 3, it is obvious that there is no memory access from one
processor to cache or local memory of other processor, if all threads in the same equivalence class
are assigned to one processor.

Theorem 4: Every thread TiseS}o!j o may reuse some data in the other threads belonging

to the other equivalence classes S(r)i05o, but never access the data referenced by the threads
belonging to the other equivalence classes.

A similar but more complicated calculation for the current parallel loop index in terms of
the current serial wrap-loop index and the previous wrap-loop and parallel loop indexes as one
in Section 4.2 can be developed from Theorem 1 and Theorem 3 in [8].

5. A p p l i c a t i o n of t h e R e s u l t s in P a r a l l e l C o m p i l e r s

In this section, we briefly describe a way to apply the above results in parallel compilers to
eliminate the cache or local memory thrashing. Here we only show the essential idea of the
approach, and leave the detailed implementation to readers.

In general, parallel/vectorized compilers hold the information of nested loop structure. After
dependence analysis and loop transformation, the serial wrap-loop that immediately encloses
parallel loops is easy to be determined, assuming only one level loops are parallel or parallelized.
A heuristic algorithm may be required to estimate the execution time for the loop nest. If the
loop nest might be time-consuming, the results in this paper are applied.

The algorithm to determine whether the time-consuming loop nest satisfies the programming
model in section 3.3 can be described as follows:

324

1. An heuristic algorithm is required to choose the major array variables by estimating the
amount of elements referenced in the loop nest and checking the linear expressions.

2. Check the expression in each dimension for these major arrays. If an array has more than
two dimensions and more than two subscript expressions using the wrap-loop and parallel loop
indexes, move the array from the major array set.

3. If an array appears in more than one parallel loops in the loop nest and the loop-alignment
cannot make its expression in the same form for the parallel loops~ move the array from the major
array set.

4. Appling the approach presented in L e m m a 1 for each pair of arrays, if there is inherent
thrashing condition between them, move one of them from the major array set.

5. If the major array set is not empty, calculate the initial points for each equivalence class
by using the approach in this paper, and save all information in a shared data structure.

6. Create run-time library for the parallel loops in the loop nest, which will compute the
current parallel loop index in terms of the previous wrap-loop and parallel loop indexes and the
current wrap loop index as shown in Theorem 1, 2 and 3. The information in the shared data
structure can be used to schedule processor dynamically at the execution time.

We want to emphasize here that the approach presented in the paper may eliminate some
unnecessary data moving then reduce the Cache or local memory thrashing. In worst case, the
approach cannot predicate the right major arrays, but it never increases cache missing and
degrade the system performance.

If the parallel nested constructs are found in the time-consuming loops satisfying our program
model, the implementation will be straightforward. In general, sequential optimizers create
template control variables such as ~loop-increment'~ ~loop-bound" and "control counter" to
perform loop control. The loop index variable is recomputed in the beginning of the loop body
at the execution time. The same idea can be employed in parallel loops to compute the right
iteration to be executed for the processor.

In static scheduling, all the equivalence classes can be computed and assigned to the processors
at the compiler time. The initial points of each equivalence class can be determined by calculating
the loop lower bounds and the a, fl, ~ in Theorem 1. Each processor requires some local memory
locations to keep the a, fl, 7, and other information.

In self-scheduling [9], the initial points of the equivalence classes are prepared at compile time,
and are stored in a shared data structure. In the first iteration of the outermost serial loop, the
processors get the initial points from the shared data structure and execute the corresponding
equivalence classes. After that, each processor can calculate the current vectors from the previous
vectors which are stored in the local memory in the processor. If all iterations in an equivalence
class have completed, the processor can check the shared data structure to find whether any
other equivalence classes are available.

The approach presented in the paper may be against the idea of load balancing in self-
scheduling, because restricting each processor to specific set of array elements to minimize cache
or local memory thrashing may interfere with the load balancing mechanism. Some hueristic
needs to be developed for a processor, which have completed all iterations in the equivalence

325

classes with data in its own cache or local memory, to move data in other equivalence class from
the other processors if these processors have heavy working load. The heuristic development will
depend on results of experimence and is beyond the scope of the paper.

6. E x p e r i m e n t a l R e s u l t s

We have implemented the results of this paper in a parallel compiler prototype, which performs
the dependence analysis and paralAel transformations for FORTRAN programs. The prototype
computes the a, fl, 7 in Theorem 1, and the initial points at compiler time, then uses the in-
formation for dynamic scheduling as in [9] at execution time. The parallel code generated by
the prototype is running on a shared memory multiprocessor simulator bas MIPS-based system
simulator. The system can simulate 4 to 16 processors, sizes of cache memories, cache coher-
ence protocols, cache line sizes and memory bandwidth of data bus, crossbar or interconnection
network. The processor and the cache in the simulation system are based on MIPS R3000
and 1~4000. The prototype, simulates different scheduling strategies also. They include static
scheduling, self-scheduling, and guided-self-scheduling. The experimental results show that these
scheduling approaches are slightly different on the execution performance. But the technique pre-
sented in this paper to reduce the cache thrashing problem made a significant improvement for
the execution performance, no matter which scheduling approach was used in the experiments.

In examining the experimental results, the reader should be aware that some of the improve-
ments cited may have been achieved because the huge cost of the cache is missing in RISC
architecture. We compared the parallel code execution with or without the compiler strategy
presented in this paper for the cache thrashing problem and found significant enhancement by
eliminating the unnecessary data moving back and forth between processors. In the experiment,
we assume that the memory and crossbar bandwidth is proportionally improved when the number
of processors gets increased.

Gaussian El iminat ion. Gaussian Elimination is a basic matrix operation that is used in
many application programs. We use a 1K by 1K array in the experimental benchmark.

Number Original
Processor Serial Code

4 285.0s
8 285.3s
16 286.2s

Parallel Code
with Cache Thrashing

163.5s
109.8s
83.6s

Parallel Code
without Cache Thrashing

102.2s
59.9s
39.8s

Speed Up

1.6
1.7
2.1

Linpack Benchmark . Linpack benchmark is vectorized/parallelized code. We chose the
loops containing SAXPY and SMXPY subroutine calls, and inlined these routines in the loops,
most of which have three level loops: Serial, parallel, serial. As the table below shows, our
approach achieved better performance from the original parallel code that doesn't have any
consideration for the cache thrashing problem. To make this measurement, we use 1K by 1K
Linpack benchmark.

~ pNumber Original
rocessor Serial Code

I 4 514.7s
8 514.3s
16 515.2s

Parallel"Code Parallel Code
with Cache Thrashing without Cache Thrashing

32T.Ss' 234.0s
226.9s 151,3s
161.0s 94,7s

Speed Up

1.4
1.5
1.7

326

A Comple te Application. We also performed the test on a complete application program
benchmark, a computational chemistry application program. The kernel of the most frequently
used routine has the following form:

K = 0
1 0 0 K = K + I

PARALLEL DO I = 1, M

DO 200 J = 1, M
X(I+K,J+I+K)

.... = X(I+K, 3+I-bK) *
200 CONTINUE

ENDPARALLEL_DO

IF (K .LT. MAXBOUND) GO TO 100

The dimension of the array X is 3K by 1K. The approach presented in the paper works
perfectly for the program. The table below shows the results when our approach was applied to
eliminate cache thrashing.

Number
Processor

4
8
16

Original
Serial Code

1732.0s
1734.1s
1735.7s

Parallel Code
with Cache Thrashing

1415.6s
843.2s
557.8s

Parallel Code Speed Up--]
without Cache Thrashing J

832.7s 1.7 I
481.8s 1.75

_ _ 309.9s 1.8

The compilation time was measured also on our experience. Since the loops and array sub-
script expressions in the loops are well represented in vectorized/parallel compiler, the imple-
mentation of the approach presented in the paper only costs less than 7000 line C code. The
compilation time only increases less thau 5% for all benchmarks with thousands line FORTI~AN
code. In dynamic scheduling, the approach presented in the paper requires more complicated
shared data structure than one described [9]. It usually takes couple thousands bytes for a 1K
• 1K array variable to save the initial points for the equivalence classes.

7. Conclusions
Most of the compiler techniques used to enhance the cache hit ratio focus on data locality by
blocking the original programs. This paper describes another phenomena called "cache or local
memory thrashing", which degrades the cache hit ratio and increases unnecessary data-bus,
crossbar or interconnection network traffic. A mathematical concept is presented in this paper,
which partitions the iteration space so that the threads in the same equivalence class never access
the caches or local memories in other processors if they are assigned to the same processor. The
approach in this paper is good for some program constructs that are very common in application
programs. For these application programs, our approach can significantly reduce the cache or
local memory thrashing phenomena.

We only discuss a simple machine model and a simple program model in this paper. Bven
with that, the multiple linear expression case complicates the algorithm to compute the appro-
priate parallel loop index at the execution time. Future research work on this topic includes

327

mathematical concept s for more complicated machine models and more complex program mod-
els, and simpler algorithms for the multiple linear expression cases. Studying new algorithms for
the other features of cache hardware design, such as different cache coherence strategies, mul-
tiple word cache lines, or multiple level cache memory, is also important in developing parallel
compilers.

Reference

[1] Abu-Sufah, W., Kuck, D., and Lawrie, D., On the Performance Enhancement of Paging Sys-
tems Through Program Analysis and Transformations, IEEE Transactions on Computers,
C-30, 5, May 1981.

[2] Allen, J.R., and Kennedy, K., PFC: A Program to Convert Fortran to Parallel Form, Report
MASC-TR82-6, Rice University, Mar. 1982.

[3] Baer, J., and Wang, W., Multilevel Cache Hierarchies: Organizations, Protocols, and Per-
formance, Journal of Parallel and Distributed Computing, Vol. 6, 451-476.

[4] Burke, M., and Cytron, R., Interprocedural Dependence Analysis and Parallelization, Pro-
ceedings of SIGPLAN 1986 Symposium on Compiler Construction, July 1986.

[51 Calahan, D., A Global Approach to Detection of Parallelism, Feb. 1987, Ph.D. Thesis,
Computer Science Department, Rice University, Houston, TX.

[6] Callahan, D., Cart, S., and Kennedy, K., Improving Register Allocation for Subscripted
Variables, Proceedings of the ACM SIGPLAN'90 Conference on Programming Language
Design and Implementation, White Plains, NY, June 20-22, 1990.

i7] Dongarra, J., Sorensen, D., and Brewer, O., Tools and Methodology for Programming
Parallel Processors, Aspects of Computation on Asynchronous Parallel Processors,]EFIP
1989, pp. 125-137.

[8] Fang, Z., and Lu, M., A Solution of Cache Ping-Pong Problem in RISC Based Parallel
Processing Systems, Proceedings of International Conference on Parallel Processing lg91,
St. Chaise, pp. 1-238 - 245.

I9] Fang, Z., Yew, C., Tang, T., and Zhu, C., Dynamic Processor Self-scheduling for General
Parallel Nested Loops, IEEE Transactions on Computer, Vol. 39, No. 7, (July 1990),
919-929.

[10] Kuck, D., et. al., Parallel Supercomputing Today and Cedar Approach, Science, (Feb.
1986), 967-974.

[111 Kuck, D.J., Kuhn, R.tt., Leasure, B., and Wolfe, M.,The Structure of an Advanced Vec-
torizer for Pipeline Processor, Proceedings of IEEE Computer Society Fourth International
Computer Software and Applications Conference, Oct. 1980.

[12] Leasure, B., et. al., PCF Fortran: La~aguage Definition by the Parallel Computing Forum,
Proceedings of International Conferences on Parallel Processing, Aug. 1988.

[13] Padua, D.A., and Wolfe, M., Advanced Compiler Optimizations for Supercomputers, Com-
munications ACM, (Dec. 1986), I184-1201.

[14] Wolfe, M., Iteration Space Tiling for Memory Hierarchies, Proceedings of the Third SIAM
Conference on Parallel Processing, Los Angeles, CA, Dec. 1-4, 1987.

