Abstract
Given a class

of languages, let Pol(

) be the polynomial closure of

, that is, the smallest class of languages containing

and closed under the operations union and marked product L a L', where a is a letter. We determine the polynomial closure of various classes of rational languages and we study the properties of polynomial closures. For instance, if

is closed under quotients (resp. quotients and inverse morphism) then Pol(

) has the same property. Our main result shows that if

is a boolean algebra closed under quotients then Pol(

) is closed under intersection. As an application, we refine the concatenation hierarchy introduced by Straubing and we show that the levels 1/2 and 3/2 of this hierarchy are decidable.
Preview
Unable to display preview. Download preview PDF.
References
J.A. Brzozowski, open problems about regular languages. Formal language theory, perspective and open problems (R.V. Book editor) academic Press (1980) 23–47.
S. Eilenberg, Automata, Languages and Machines. Academic Press, vol.A(1974), vol.B(1976).
K. Hashiguchi, Regular languages of star height one. Information and Control 53 (1982) 199–210.
K. Hashiguchi, Limitedness theorem on finite Automaton with distance functions. JCSS 24 (1982) 233–244.
K. Hashiguchi, Representations theorems on regular languages. JCSS 27 (1983) 101–115.
M. Lothaire, Combinatorics on words. Addison-Wesley 1983.
D. Perrin, J-E. Pin, First Order Logic and Star Free Sets, JCSS 32 (1986) 393–406.
J-E. Pin, Varieties of formal languages. North Oxford (London) Plenum (New York) 1986.
J-E. Pin, Variétés de langages et variétés de semigroupes. Thèse d'Etat, Paris (1981).
J-E. Pin, Hiérarchies de Concaténation, RAIRO Theoretical Informatics 18 (1984) 23–46.
J-E. Pin, Langages rationnels et reconnaissables. Cours Université de Naples, 1984
J-E. Pin, H. Straubing, Monoids of upper-triangular matrices Proceedings of the conference "semigroups-Structure theory and Universal algebraic problems". Szeged August 1981.
M-P. Schützenberger, Sur le produit de concaténation non ambigu. Semigroup Forum 18 (1979) 331–340.
M-P. Schützenberger, sur certaines opérations de fermeture dans les langages rationnels. Istituto Nazionale di Alta Mathematica. Symposia Mathematica. Vol XV (1975) 245–253.
I. Simon, Hierarchies of Events with do-depth one. Thesis, University of Waterloo, 1972.
I. Simon, Piecewise Testable Events. Lecture Notes in Computer Science 33. Springer Verlag (1975) 214–222.
H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets. J. Pure and Applied Algebra 15 (1979) 319–327.
H. Straubing, Finite semigroup varieties of the forme V * D J. Pure and applied Algebra 36 (1985) 53–94.
W. Thomas, Classifying regular events in Symbolic Logic. JCSS 25 (1982) 360–376.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arfi, M. (1987). Polynomial operations on rational languages. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds) STACS 87. STACS 1987. Lecture Notes in Computer Science, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039607
Download citation
DOI: https://doi.org/10.1007/BFb0039607
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-17219-2
Online ISBN: 978-3-540-47419-7
eBook Packages: Springer Book Archive