Abstract
A set P(DO, R) of all invariants that ensure termination and where the postcondition R is true after termination is defined for every loop DO and for every postcondition R. Complying with the corresponding properties required, these sets P(DO, R) induce a topology on wp(DO, R). The weakest precondition wp(DO, R) is the weakest invariant of DO with respect to R. The topology P(DO, R) has a non-trivial structure and contains arbitrary conjunctions of invariants.
Preview
Unable to display preview. Download preview PDF.
References
E.W.Dijkstra: Guarded commands, nondeterminacy and formal derivation of programs, Comm.ACM 18 (1975) 453–457.
E.W.Dijkstra: A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ, 1976.
E.W.Dijkstra, C.S.Scholten: Predicate Calculus and Program Semantics, Springer Verlag New York Inc., 1990.
D. Gries: The Science of Programming, Springer Verlag New York Inc., 1981.
C.A.R. Hoare: An axiomatic basis for computer programming, Comm. ACM 12 (1969) 576–580.
C.A.R. Hoare, I.J. Hayes et al.: Laws of Programming, Comm. ACM 30 (1987) 672–686.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Futschek, G. (1993). Algebraic properties of loop invariants. In: Bjørner, D., Broy, M., Pottosin, I.V. (eds) Formal Methods in Programming and Their Applications. Lecture Notes in Computer Science, vol 735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039700
Download citation
DOI: https://doi.org/10.1007/BFb0039700
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57316-6
Online ISBN: 978-3-540-48056-3
eBook Packages: Springer Book Archive