
Boiten, Eerke Albert (1993) Parsing in ISBES. In: Bjorner, D. and Broy,
M. and Pottosin, I.V., eds. Formal Methods in Programming and Their Applications
International Conference. Lecture Notes in Computer Science . Springer,
Berlin, Germany, pp. 423-433. ISBN 978-3-540-57316-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21112/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/BFb0039724

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21112/
https://doi.org/10.1007/BFb0039724
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Parsing in isbes

Eerke A. Boiten?

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O Box 513, 5600 MB Eindhoven, The Netherlands
email: eerke@win.tue.nl

Abstract. It is shown how parsing can be described as a problem in the
class isbes, Intersections of Sets and Bags of Extended Substructures,
defined in an earlier paper, by viewing parsing as a generalization of
pattern matching in several ways. The resulting description is shown to
be a good starting point for the transformational derivation of the Cocke-
Kasami-Younger tabular parsing algorithm that follows. This derivation
is carried out at the level of bag comprehensions.

Keywords. transformational programming, formal specification, substructures,
bags, parsing, Cocke-Kasami-Younger

1 Introduction

Transformational programming is a methodology for the derivation of efficient
programs from formal specifications by applying semantics preserving transfor-
mations, thus guaranteeing correctness of the final result. For a survey of the
transformational method, cf. [Par90]. Current research is no longer concentrated
on particular derivations or transformation steps, but on higher level knowledge:
data types with their characteristic algorithms and properties (theories of data,
e.g. [Bir87]); transformation strategies so well understood that they can be au-
tomated (theories of programs, e.g. [SL90]); derivations and their general shapes
(theories of derivations, e.g. [PB91]).

The present paper falls in the first category: formal specifications in terms of
particular data types, and the algorithms that can be derived from those.

An earlier paper [Boi91b] proposed a general problem, called isbes
(intersection of a set and a bag of extended substructures), mainly as a gener-
alization of pattern matching problems. Several instances of this problem were
given, most of them pattern matching examples. The claim that parsing could
also be treated in this way was removed from a preliminary version of the paper,
since it was not clear how this could be substantiated.

? This research has been carried out at the University of Nijmegen, Department of
Computing Science, sponsored by the Netherlands Organization for Scientific Re-
search (NWO), under grant NF 63/62-518 (the STOP — Specification and Trans-
formation Of Programs — project).

This paper describes how, from an almost trivial specification of parsing as
an isbes problem, by stepwise generalization an isbes instance is obtained that
naturally leads to a derivation of the Cocke-Kasami-Younger parsing algorithm.

Various characteristics of the final solution arise during both phases of the
development: the formulation of parsing as an isbes instance, and the derivation
of the algorithm. This substantiates the claim that formal specification in isbes-
style has relevance for different kinds of problems besides pattern matching.

2 Types and Operations

Types are denoted as sets of introduction rules with laws on terms. The impor-
tant type Struct of binary structures is defined by introduction rules

ε : Struct(t)
x : t

τ(x) : Struct(t)
a, b : Struct(t)
a t b : Struct(t)

and law
x t ε = ε t x = x,

i.e. ε is the unit of t. When t is associative, we have the type List of finite
lists (usually with —‖ for t). If it is also commutative, we get the type Bag of
finite bags (with]). When, additionally, t is idempotent, the type Set of finite
sets is obtained, i.e. t can be denoted by ∪. This family of structured types is
commonly named the Boom-hierarchy [Mee89].

A number of useful operators [Bir87] on these types, together colloquially
called “Squiggol”, are defined below (a, b are of type Struct(t1) and c, d have
type Struct(t2)):

– “filter” � that takes a predicate and a binary structure, and returns the
structure containing those of its elements that satisfy the predicate:

p� ε = ε

p� (τ(x) t a) = if p(x) then τ(x) t (p� a)
else p� a fi

– “map” ∗ that takes a function and a binary structure, and applies the func-
tion elementwise:

f ∗ ε = ε

f ∗ τ(x) = τ(f x)

f ∗ (a t b) = (f ∗ a) t (f ∗ b)

– “reduce” / that takes a binary operator ⊕ and a binary structure, that it
reduces by putting ⊕ between all elements (1⊕ denotes the unit of ⊕):

⊕/ε = 1⊕

⊕/τ(y) = y

⊕/(a t b) = (⊕/a)⊕ (⊕/b) for nonempty a, b

– “cross” X that takes two binary structures and a binary operation, generates
all possible combinations of elements from one of each of the structures and
combines them using the operation:

X⊕ ε = ε

aX⊕ τ(x) = (⊕x) ∗ a
aX⊕ (c t d) = (aX⊕ c) t (aX⊕ d)

Tuples are denoted with <>. Let πi denote the projection to the i-th component
of a tuple; compositions of projections will be denoted with lists of indices, e.g.
π1(π2(π2(x))) = π1,2,2(x). Lists of two elements will occur frequently; [a, b] will
be used for the list τ(a)—‖ τ(b). Partial parametrization of prefix functions is
denoted using underscores, i.e. f(a, , c)(b) = f(a, b, c).

3 isbes Revisited

The problem class ISBES (intersection of a set and a bag of extended
substructures) can be specified as follows:

Given
– a structured type S(t),
– an object O of the structured type S(t),
– a set P (patterns) of objects of the type S+(t), where S+(t) is a type

of tuples, the first component of which is in S(t) and the second is
in another type of “labels”.

– a function D+ (decompose) which yields the bag of extended sub-
structures (of type S+(t)) of an object of type S(t),

– a function R (result) which takes a bag of elements of type S+(t)
and returns the “answer” to the problem,

compute
R(P∩∩D+(O))

where ∩∩ is defined by
S∩∩B = (∈ S) �B.

Formal definitions of the terms used in this description can be found in [Boi91b];
informally

– a structured type S(t) is a type of objects that consist of structure, and basic
elements of type t. These can be seen as together forming the information
of the structured object. Examples of structured types are lists, bags, sets,
and trees of all possible kinds.

– a substructure of a structured object is an object of the same type, that con-
tains a subset of the information present in that object. For each structured
type, various useful notions of substructures exists – lists, e.g., have prefixes,
suffixes, substrings, and segments.

– an extended substructure of a structured object is a substructure, labeled
with information about the “position” of the substructure in the original
object. An example form, for lists, segments with indices. The bag of all
substructures of S that have label E is given by φ(S,E), where φ is a function
characterizing the type of substructure chosen.

Some ideas on deriving programs from isbes-style specifications are given in
[Boi91b]. Important is also the following:

Observation 1 When each label component of an extended substructure
uniquely identifies the substructure within the original object, a data type trans-
formation can take place, viz. the substructure can be represented by just its label
when the original object is known (in context).

In the case that a certain bag contains at most one occurrence of each value,
it could be said that the bag “is actually a set”. There is a subtle difference
between the property mentioned above and the property that the bag of all
substructures “is actually a set”. The data type transformation can only be
done when φ returns at most singleton bags (e.g. for lists with indices), whereas
the bag of all substructures “is a set” in all cases where φ returns bags containing
all different elements (e.g. in the case of segments with offsets).

4 Parsing in isbes

The problem class isbes describes generalizations of pattern matching; intu-
itively parsing appears to be a related problem and so maybe also something
that could be described as an isbes problem.

Pattern matching is the problem of deciding whether any element of a certain
set of patterns occurs in a structure; parsing is the problem of determining if and
how a certain sentence is generated by a certain grammar (to fix terminology
for now). A borderline case of pattern matching occurs when the structure is
one of the patterns. Parsing can be seen as a pattern matching generalization
in at least two ways. In one view, the set of strings generated by the language
is considered as the pattern set, and we ask whether the sentence is one of the
patterns. This is worked out in detail in Section . An alternative view is to take
a complicated (infinite) structure representing all possible sentences generated
by the grammar, and as the pattern set (implicitly) only the structures that
represent derivations of the sentence. This alternative view will be discussed in
Section .

In order to be able to formally describe these ideas, we now first give a
formal description of the parsing problem (what follows now is a Squiggol-ish
description of traditional formal language theory).

Definition 2 A context free grammar is a 4-tuple < S, VN , VT ,PR > such that
S ∈ VN and PR : VN → Set(List(V)) where V = VN + VT .

In such a grammar < S, VN , VT ,PR >, S is called the starting symbol; elements
of VN are called nonterminals and elements of VT terminals. If r ∈ PR(X), then
r is called an alternative or right hand side of (the left hand side) X.

Definition 3 The language generated by a grammar < S, VN , VT ,PR > is the
set L(τ(S)), where L : List(V)→ Set(List(VT)) is defined by:

L(ε) = {ε}
L(τ(x)) = {τ(x)} (x ∈ VT)

L(τ(x)) = ∪/L ∗ PR(x) (x ∈ VN)

L(x—‖ y) = L(x)X—‖ L(y)

Definition 4 A grammar < S, VN , VT ,PR > is in Chomsky Normal Form
(CNF) iff all right hand sides consist of exactly one terminal or exactly two
nonterminals, i.e.

∀X ∈ VN : ∀ s ∈ PR(X) : (∃x ∈ VT : s = τ(x)) ∨ (∃Y,Z ∈ VN : s = [Y,Z]).

Note that no nonterminal in a CNF grammar generates the empty string. This
holds in particular for the starting symbol, so the empty string cannot be in the
language generated.

The following subsections describe completely different ways of describing
parsing as an isbes problem. For completeness, we also note that in principle
everything can be described as an isbes problem: if one takes a trivial notion of
substructure, viz. every object is only a substructure of itself, and one takes the
pattern set to be some kind of universe, the isbes problem reduces to computing
R({O}) for some object O and function R. This implies that “anything” is an
isbes problem, and thus so is parsing. An important point is, indeed, that isbes
is a way of describing problems, not a limited class of itself.

4.1 Substructures of Parse Forests

Consider the grammar (incidentally, one in CNF) in Van Wijngaarden notation

S:S, S;
“a”.

i.e. < S, {S}, {a}, λS.{[S, S], [a]} >, then the type of parse trees for this grammar
is

P2(“a”) : S
x, y : S

P1(x, y) : S

This gives a type describing all different parse trees. Sets of parse trees are also
called parse forests. Parse forests can be represented in a condensed form as trees,
where each node contains a (nonempty) set of children1. Although descriptions

1 This may be called the mixed type of parse trees and sets; we intend to further study
mixed types and their properties.

of types via introduction rules are usually understood to describe finite objects
only, one can imagine infinite objects as well. The list of infinitely many a’s can
be viewed as a “supremum” of the type List({a}), and likewise the “supremum”
of all parse forests of the grammar above is the parse forest S∞, characterized
by

S∞ = U(P1(S∞, S∞), P2(“a”))

where U (“union”) is a constructor function with no additional properties. Now
all parse trees of the grammar can be seen as (finite) subtrees of S∞, viz. those
where each node is a singleton set.

For arbitrary grammars a similar characterization of S∞ can be given by
simultaneously defining A∞ for all A ∈ VN by A∞ = UA(i ∗ ∗PR(A)), where
i(x) = x for x ∈ VT , i(X) = X∞ for X ∈ VN , and UA is a unique constructor
without additional properties.

For parse trees, define the yield to be the concatenated list of all its (ter-
minal) leaves. Parsing is then an isbes problem: the pattern set contains all
parse trees that have the string to be parsed as their yield, the structured ob-
ject is S∞, and substructures are finite subforests with singleton nodes. The
infinite parse forest S∞ represents all possible choices to be made during pars-
ing, whereas the pattern set represents in an implicit way all possible outcomes
of the parsing process. The set of substructures of S∞ can be decomposed in
several ways. The decomposition that is chosen in a derivation that starts from
this specification largely determines what parsing algorithm is obtained. (Note
that ∩∩ distributes through set union, and thus each subset of D+(S∞) can be
independently intersected with the pattern set). Parsing algorithms derived from
this specification have as an advantage that parse trees are already present in
the solution, whereas usually the construction of parse trees has to be grafted
upon a recognition algorithm [AU72].

4.2 Stepwise Generalization via the Pattern Set

Using the experience of describing string matching as an isbes problem [Boi91b],
we now give another description of parsing as an isbes problem. From now on,
we consider non-empty strings and (thus) non-empty segments only. (Formally,
this is done by discarding the introduction rule for ε from the type List).

First, define the bag of all segments of a string by

segs (s) = {[p| ∃x, y : s = x—‖ p—‖ y }]

where {[}] denotes bag comprehension (cf. the appendix). Since w ∈ segs (w), a
trivial isbes description of parsing is given by

O
∧
= w

P
∧
= L(S)

D+ ∧= segs

R
∧
= (w ∈)

i.e., compute
w ∈ (L(S)∩∩segs (w)).

Although this seems a trivial generalization, it suggests the (in the context of
parsing relevant) computation of {w′ ∈ segs (w) | w′ ∈ L(S)}.

The substructures used above are segments, and thus it is obvious that choos-
ing indexed segments, defined by

segsi (s) = {[< p,< i, j >> | p = s[i..j]}]

as extended substructures may be helpful in this case.2 This leads to the following
isbes instance, where the pattern set has been extended to contain elements of
the same type as segsi:

D+ ∧= segsi

P
∧
= {< x,< m,m+|x| >> | x ∈ L(S) ∧m ≤ m+|x| ≤ |w| }

R
∧
= (< w,< 0, |w| >> ∈).

Note that the predicate for P allows an easy restriction to elements of L(S) not
longer than |w|.

For VN = {S} and PR in CNF, this is already quite close to the Cocke-
Kasami-Younger (CKY) parsing algorithm. In order to allow for multiple non-
terminals in VN , the pattern set and substructures are extended with nontermi-
nals:

D+(s)
∧
= {[< p,< i, j,X >> | p = s[i..j] ∧X ∈ VN }]

P
∧
= {< x,< m,m+|x|, X >> | x ∈ L(X) ∧m ≤ m+|x| ≤ |w| }

R
∧
= (< w,< 0, |w|, S >> ∈).

A recursive version of P∩∩D+(O) can be seen as a parsing algorithm that corre-
sponds to the CKY algorithm when the grammar is in CNF. This will be shown
in a derivation below.

5 A Derivation of the CKY Parsing Algorithm

The goal is to compute R(P∩∩D+(w)). First the subexpression P∩∩D+(w) is
reduced to a union of bag comprehensions.

P∩∩D+(w)

={ definition P , definition D+ }
{< x,< m,m+|x|, X >> | x ∈ L(X) ∧m ≤ m+|x| ≤ |w|}∩∩
{[< p,< i, j,X >> | p = w[i..j] ∧X ∈ VN }]
2 Note that we use the convention of not numbering the elements themselves, but

the “borders” between them. E.g. w[1..2] denotes the list consisting of the second
element of w, and w[0..|w|] = w.

={ definition ∩∩ , simplifications }
{[< w[i..i+k], < i, i+k,X >> | w[i..i+k] ∈ L(X)}]

={ comprehension dummies made explicit }⊎
0≤i<i+k≤|w| {[< w[i..i+k], < i, i+k,X >> | w[i..i+k] ∈ L(X)}]

This expression is abstracted by the following embedding. From this point on,
the string w is assumed to be known in context. Let

E(i, k,X) =< w[i..i+k], < i, i+k,X >> .

Define a function cky by:

cky(i, k : 0 ≤ i < i+k ≤ |w|) = {[E(i, k,X) | w[i..i+k] ∈ L(X)}] .

Thus,

P∩∩D+(w) =
⊎

0≤i<i+k≤|w|

cky(i, k).

Also we have that

R(P∩∩D+(w)) = (((= S) ◦ π3,2) � cky(0, |w|) 6= ∅).

We derive a recursive definition for cky. Effective parsing algorithms are
characterized by the fact that they are phrased in terms of the grammar only,
without resorting to reference to the generated language. This should also be
the driving force here: occurrences of L need to be replaced by occurrences of
PR. This can be done easily when the grammar is in Chomsky Normal Form,
as can be seen in the derivation below.

Some of the more complicated calculation rules used below are given in the
appendix, as indicated by a number in the hint. The first step is to be a case
introduction on k, viz. k = 1 ∨ k > 1. In the case that k = 1 we have:

cky(i, 1)

= { definition cky }
{[E(i, 1, X) | w[i..i+1] ∈ L(X)}]

= { CNF: strings of length 1 are produced in 1 step}
{[E(i, 1, X) | w[i..i+1] ∈ PR(X)}] ,

which is of the required form: it refers to PR but no longer to L.
In the case that k > 1 we have:

cky(i, k)

= { definition cky }
{[E(i, k,X) | w[i..i+k] ∈ L(X)}]

= { CNF: strings of length ≥ 2 are produced in more than 1 step }
{[E(i, k,X) | ∃m,Y, Z : 0 < m < k ∧ Y ∈ VN ∧ Z ∈ VN

∧w[i..i+m] ∈ L(Y) ∧ w[i+m..i+k] ∈ L(Z)

∧[Y, Z] ∈ PR(X)}]
= { bag comprehension over linear index domain, Rule 10 }

k−1⊎
m=1

{[E(i, k,X) | ∃Y,Z :Y ∈ VN ∧ Z ∈ VN

∧w[i..i+m] ∈ L(Y) ∧ w[i+m..i+k] ∈ L(Z)
∧[Y,Z] ∈ PR(X)}]

= { generalization of domain of comprehension variable, Rule 12, twice}
k−1⊎
m=1

{[E(i, k,X) | ∃Y ′, Z ′ :Y ′ ∈ {[E(i,m, Y) | w[i..i+m] ∈ L(Y)}]

∧Z ′ ∈ {[E(i+m, k −m,Z) | w[i+m..i+k] ∈ L(Z)}]
∧[π3,2(Y ′), π3,2(Z ′)] ∈ PR(X)}]

= { fold cky }
k−1⊎
m=1

{[E(i, k,X) | ∃Y ′, Z ′ :Y ′ ∈ cky(i,m) ∧ Z ′ ∈ cky(i+m, k−m)

∧[π3,2(Y ′), π3,2(Z ′)] ∈ PR(X)}]
= { bag comprehension over product domain, Rule 11 }

k−1⊎
m=1

E(i, k,) ∗ (
⊎
/(cky(i,m) X⊕ cky(i+m, k−m)))

where Y ′ ⊕ Z ′ = {[X | [π3,2(Y ′), π3,2(Z ′)] ∈ PR(X)}] .

Altogether, we have

cky(i, k : 0 ≤ i < i+k ≤ |w|)
= if k = 1

then {[E(i, 1, X) | w[i..i+1] ∈ PR(X)}]
else

⊎k−1
m=1E(i, k,) ∗ (

⊎
/(cky(i,m) X⊕ cky(i+m, k−m)))

where Y ′ ⊕ Z ′ = {[X | [π3,2(Y ′), π3,2(Z ′)] ∈ PR(X)}] fi
where E(i, k,X) =< w[i..i+k], < i, i+k,X >>.

By Observation 1, this can be simplified by representing all intermediate results
E(i, k,X) by triples < i, k,X >. Formally this is done by a somewhat tedious
unfold-fold derivation, starting from the definition cky′(i, k) = E−1 ∗ cky(i, j),
resulting in

cky(i, k : 0 ≤ i < i+k ≤ |w|)
= E ∗ cky′(i, k) where
cky′(i, k : 0 ≤ i < i+k ≤ |w|)
= if k = 1

then {[< i, 1, X > | w[i..i+1] ∈ PR(X)}]
else

⊎k−1
m=1 < i, k, > ∗(

⊎
/(cky′(i,m) X⊕ cky

′(i+m, k−m)))
where Y ′ ⊕ Z ′ = {[X | [π3(Y ′), π3(Z ′)] ∈ PR(X)}] fi,

E(i, k,X) =< w[i..i+k], < i, i+k,X >>.

By applying tabulation to this version of cky, computing cky(i, k) for increas-
ing values of k, the familiar tabular parsing algorithm is obtained. Effectively,

this can be seen as a transition from an inefficient top-down parsing algorithm
(which computes cky(i, k) several times for most values of i and k) to an efficient
bottom-up parsing algorithm.

6 Final Remarks

Describing parsing as an isbes style specification proved to be an interesting ex-
ercise. The resulting specification could still be called “descriptive” (as opposed
to operational), but it did to some extent already “suggest” the Cocke-Kasami-
Younger parsing algorithm. It contained already complete information about the
intermediate values to be computed for obtaining the final result (which is not
necessary for the specification as such), but not in which order they need to be
computed (which is necessary for the operational version).

The derivation relies mostly on basic properties of bag comprehensions. It is
somewhat unfortunate that the calculation does not proceed on the (higher) level
of set-bag intersections, using rules like the ones given in [Boi91b]. This seems
due to the fact that, for efficient parsing, some of the set-bag intersections that
occur in the isbes parsing specification have to be computed elementwise from
previous intersections. The fact that extended substructures are carried around,
however, makes the calculation seem more complicated than it actually is.

Acknowledgements

Helmut Partsch, Paul Frederiks and Johan Jeuring are thanked for many remarks
that improved the clarity and readability of this note.

References

[AU72] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compil-
ing, Vol. 1: Parsing. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[Bir87] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design. NATO ASI Series Vol. F36,
pages 5–42. Springer-Verlag, Berlin, 1987.

[Boi91a] E.A. Boiten. Can bag comprehension be used at all? Technical Report 91-21,
Dept. of Informatics, K.U. Nijmegen, September 1991.

[Boi91b] E.A. Boiten. Intersections of bags and sets of extended substructures – a
class of problems. In [Möl91], pages 33–48.

[Mee89] L.G.L.T. Meertens. Lecture notes on the generic theory of binary structures.
In STOP International Summer School on Constructive Algorithmics, Ame-
land. September 1989.

[Möl91] B. Möller, editor. Proceedings of the IFIP TC2 Working Conference on Con-
structing Programs from Specifications North-Holland Publishing Company,
Amsterdam, 1991.

[Par90] H. Partsch. Specification and Transformation of Programs - a Formal Ap-
proach to Software Development. Springer-Verlag, Berlin, 1990.

[PB91] H.A. Partsch and E.A. Boiten. A note on similarity of specifications and
reusability of transformational developments. In [Möl91], pages 71–89.

[SL90] D.R. Smith and M.R. Lowry. Algorithm theories and design tactics. Science
of Computer Programming, 14:305–321, 1990.

A Bag Comprehension and Calculation Rules

As described in [Boi91a], bag comprehension is an operation that can only be
soundly used in a limited number of cases. For set comprehensions, one can
safely write {E(x) | P (x)}; for list comprehensions one is forced to give a (list)
domain for the comprehension variable (e.g., [E(x) | x ← l ∧ P (x)]); implicitly,
such a domain must be present for bag comprehensions as well. “Sound” bag
comprehensions are defined by the following rules (B and Bi denote bags):

{[x | x ∈ B ∧ P (x)}] = P �B (5)

{[x | false}] = ∅ (6)

{[x | ∃y : Q(y, x)}] =
⊎

y(if ∃x : Q(y, x)
then {[that x : Q(y, x)}]
else ∅ fi)

if ∀x, y, z : (Q(y, x) ∧Q(y, z))⇒ x = z

(7)

{[f(x) | x ∈ B }] = f ∗ B (8)

{[x⊕ y | x ∈ B1 ∧ y ∈ B2 }] = B1 X⊕ B2. (9)

Most of these rules will be used tacitly in derivations, in particular Rule 8 is
often used in combination with another one. Some additional rules to be used
are the following.

Bag comprehension over linear index domain. Provided m is of type m, and m
is linearly ordered by ≤, and {[x | Q}] is a sound bag comprehension, then

{[x | ∃m : a ≤ m ≤ b ∧Q}] =

b⊎
m=a

{[x | Q}] . (10)

Bag comprehension over product domain. If {[x | P (x, y, z)}] is a sound bag
comprehension for fixed y and z, then

{[x | ∃ y, z : y ∈ Y ∧ z ∈ Z ∧ P (x, y, z)}] (11)

=]/(Y X⊕ Z)
where y ⊕ z = {[x | P (x, y, z)}] .

Generalization of domain of comprehension variable. This rule is used for intro-
ducing bag comprehensions, in order to allow folding later on. For an injective

function f ,

{[E | ∃x : x ∈ X ∧ P (x) ∧Q(x)}] (12)

= {[E | ∃x′ : x′ ∈ {[f(x) | x ∈ X ∧ P (x)}] ∧Q(f−1(x′))}] .

