
ar
X

iv
:0

80
3.

38
38

v2
  [

cs
.N

E
] 

 2
6 

M
ar

 2
00

9 Abstract

Two meta-evolutionary optimization strategies described in this paper ac-
celerate the convergence of evolutionary programming algorithms while still
retaining much of their ability to deal with multi-modal problems. The strate-
gies, called directional mutation and recorded step in this paper, can operate
independently but together they greatly enhance the ability of evolution-
ary programming algorithms to deal with fitness landscapes characterized
by long narrow valleys. The directional mutation aspect of this combined
method uses correlated meta-mutation but does not introduce a full covari-
ance matrix. These new methods are thus much more economical in terms
of storage for problems with high dimensionality. Additionally, directional
mutation is rotationally invariant which is a substantial advantage over self-
adaptive methods which use a single variance per coordinate for problems
where the natural orientation of the problem is not oriented along the axes.

Step-recording is a subtle variation on conventional meta-mutational al-
gorithms which allows desirable meta-mutations to be introduced quickly.
Directional mutation, on the other hand, has analogies with conjugate gra-
dient techniques in deterministic optimization algorithms. Together, these
methods substantially improve performance on certain classes of problems,
without incurring much in the way of cost on problems where they do not
provide much benefit. Somewhat surprisingly their effect when applied sep-
arately is not consistent.

This paper examines the performance of these new methods on several
standard problems taken from the literature. These new methods are directly
compared to more conventional evolutionary algorithms. A new test prob-
lem is also introduced to highlight the difficulties inherent with long narrow
valleys.
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1 Overview

1.1 Arguments for Meta-evolution

A number of stochastic optimization procedures have been developed since
the electronic computer has made automated optimization possible. Methods
which have had substantial recent development include simulated annealing,
genetic algorithms, evolutionary strategies and evolutionary programming.
One shared property of each of these classes of algorithms is that they trade
some degree of convergence speed for a decreased likelihood of avoiding locally
optimal but globally suboptimal solutions.

In each of these well-known algorithms, there is a parameter or set of
parameters which can be manipulated to affect this trade-off between con-
vergence power and speed. In simulated annealing, this parameter is the
simulated temperature, while in evolutionary programming, this parameter
is the mutation rate. Typically, the temperature or mutation rate is decreased
as the optimization progresses. This tactic substantially improves the rate of
convergence, often without significantly increasing the likelihood of finding
a suboptimal solution. In special cases such as a quadratic bowl, cooling
schedules can be derived which satisfy various theoretical constraints regard-
ing the effort needed to have a given probability of finding a solution in a
given amount of time, but this cannot be done in general since the derivation
of the optimal annealing schedule requires detailed knowledge of properties of
the function being optimized. Instead, an arbitrary and hopefully sufficiently
conservative cooling schedule is typically invented and used.

An alternative to a fixed cooling schedule is to derive the cooling schedule
adaptively as the optimization algorithm learns about the fitness landscape
that it is exploring. The idea that the mutation rate itself should be a
parameter specific to each member of the population to be evolved is not
new and has been recently explored in [Fog92] and [Atm91]. This form of
meta-evolution is attractive in that no explicit cooling schedule need be given.

1.2 Common problems

Problems whose solutions are found in long narrow valleys cause severe prob-
lems with evolutionary programming algorithm because the narrowness of the
valley greatly decreases the probability of finding a solution which improves
on a point which is already on the floor of the valley. These problems have
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been attacked in the past by using a covariance matrix to cause mutations
to be correlated as described in [Seb92], [Sch81] and [Fog92]. This method is
similar in essence to the conjugate gradient techniques used in conventional
numerical optimization codes in that they concentrate the exploration of the
fitness landscape in particular directions based on past experience. Various
forms of directional mutation has been the subject since the mid 60’s as
indicated by the work of Bremermann and others [BR64, BR65].

Combining this method with meta-evolution as is done in the methods
presented in this paper raises some interesting problems, however. In partic-
ular, in meta-evolution, all parameters which control mutation are included
in the genome and must themselves be subject to mutation. But, if there are
n real valued parameters in the genome initially, then it takes n2 entries in
a covariance matrix to describe how those n parameters should be changed.
Including the covariance matrix in the genome increases its size to n2 + n
real valued parameters and raises the serious question of how the mutation
of the new parameters should be described. Self-similar mutation schemes
can avoid the risk of a recursive explosion in the number of parameters to be
optimized.

Even so, the original n2 covariance parameters in the description of each
element of the entire population can be very expensive, even if meta-meta-
mutation parameters are not included. Thus, it is desirable to find a more
economical method for describing correlated mutation, and to find a way so
that this correlated mutation description contains its own description of how
it should be changed. One additional desiderata is that the meta-mutation
be self similar so that the algorithm is insensitive to changes in scale. The
two new strategies described in this report address this need. Other work
along these lines can be found in [Fog97] where a directional mutation scheme
is described which has overhead similar to the methods described here.

It should be noted that the stochastic optimization methods which have
used Cauchy distributed mutations as in [FK92, SH87, Yao91, Yao95, YL97]
are inherently not rotationally invariant. In evolutionary optimizations deal-
ing with a large number of dependent parameters, this means that the pro-
portion of progeny which change only a few parameters will be much higher
than would be expected under the assumption of complete rotational sym-
metry of the optimization algorithms. For many problems, notably includ-
ing the synthetic problems often used to evaluate optimization algorithms,
this coordinate orientation can be highly advantageous. For example, in the
multi-modal test problems explored in [YL97] the local optima are arranged
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in orthogonal grids parallel to the parameter axes. In other problems of sig-
nificant practical significance, however, correlated changes in parameters are
necessary. Examples of this need for correlated changes occur in artificial
neural networks or in electronic filter design.

2 Two New Strategies

2.1 Step Recording

In a conventional meta-mutation algorithm, the mutation rate for each mem-
ber of the population is mutated independently of the state vector. This
method can lead to slower convergence, especially in conjunction with direc-
tional mutation if a low probability step leads to improvement in fitness. If
this happens, repeating a step like the one that caused the improvement can
be advantageous. If the mutation rate (and possibly the mutation direction)
was changed independently of the fitness parameters, then similar steps will
probably stay unlikely and convergence will be slow.

This situation will happen when a very fit solution in a small basin has
been found due to taking a very large step. That particular solution will
tend to remain in the population, but further improvement is unlikely unless
subsequent small steps are taken. Even if an improved solution is found by
taking a small step (which is unlikely, but it will happen eventually), it is
likely that the mutation rate will still be large (which is why we found this
solution in the first place), and further improvements will only come slowly
as solutions with both better fitness and lower mutation rates are found. The
typical sequence is for the mutation rate to decrease first which then allows
smaller steps to be taken resulting in further optimization.

With step recording, on the other hand, the mutation rate of an offspring
is set to the magnitude of the distance between the parent and child solution.
This coupling of mutation rate and change in position means that any solu-
tions which improve fitness by taking small steps will automatically lead to a
line of progeny which tend to explore by taking small steps. Similarly, when
directional mutation is combined with step recording, once a step is taken
along the fitness gradient, further steps similar to that one are likely. This
provides algorithms using directional mutation a sense of history in much
the same manner as conjugate gradient methods use past history to improve
further optimization efforts.
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2.2 Directional Mutation

In order to fully characterize all of the possible correlations between n random
variables, it is necessary to use roughly n2 quantities. It does not, however,
follow that a description this complete is necessary to gain the benefits of
directional mutation. In particular, a covariance matrix specifies much more
than just mutation biased in a particular direction. Indeed, a covariance
matrix contains much more information than can be reliably extracted from
the recent pedigree of a single member of a population.

Instead, we propose the use of a much more limited model of directional
mutation in which the mutation rate has a directional component and an
omni-directional component. The total mutation is the sum of mutations
derived from each of these components. The directional component of muta-
tion is restricted to a line, while the omni-directional component is sampled
from a symmetric gaussian distribution. Together these components give a
total mutation distribution which is an ellipsoidal gaussian distribution. In a
heuristic attempt to enhance convergence, the directional component is also
biased slightly.

If we use the notation N(µ, σ) to indicate a normally distributed random
variable with mean µ and standard deviation σ and use U(a, b) to indicate
a uniformly distributed random variable taken from the half open interval
[a, b), then the following mutation algorithm suffices to provide a directional
mutation of the vector x

λ := N(1, 1)

For each xi,
xi := xi +N(0, σ) + λki

Here λ is a biased random variable which indicates how far to go along
the direction indicated by k, while σ provides the magnitude of the omni-
directional mutation component.

The mutation parameters k and σ can themselves be mutated by setting

σ := −(σ + |k|/10) log(1− U(0, 1))

λ := N(1, 1)

and then for each ki,
ki := N(0, σ) + λki
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In this algorithm the mutation of σ is done by taking a new value from the
exponential distribution with mean equal to σ augmented by a fraction of the
magnitude of k. This cross coupling between σ and k prevents the mutations
from becoming too directional. The mutation of k uses σ to provide diversity
in direction and λ to provide diversity in magnitude in a manner identical
with the way that the mutation of xi was done. The use of an exponential
distribution is somewhat in contrast with the trend in the literature toward
the use of a log-normal distribution, but the motivation is essentially the
same. Both the exponential and log-normal distributions allow self-similar
mutation which allows the entire algorithm to be scale invariant.

It should be noted that the meta-mutation operation described here is
self-similar and orientation independent. This means that the distribution of
mutation parameters after several generations in the absence of selection is
invariant up to the scale and orientation of the original value. This fact also
implies that the properties of the resulting meta-evolutionary algorithm are
subject to analysis by renormalization methods.

To convert this algorithm to a step recording algorithm, the mutation of
x is simplified and is done after the mutation of σ and k as shown below.

σ := −(σ + |k|/10) log(1− U(0, 1))

λ := N(1, 1)

ki := N(0, σ) + λki

xi := xi + ki

The result is that k records the mutation step which was taken so that if
this step results in an improvement, similar steps are likely to be used again.

Another notable feature of the algorithms described here are the coupling
between the directional parameters k and the omni-directional parameter σ.
The coupling from k to σ allows a population to stop mutating directionally
when necessary as well as providing a bias which tends to increase the overall
mutation rate in the absence of selection for lower rates. The coupling from
σ back to k allows changes in the preferred direction of mutation to take
place.
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3 Experimental Methods

To provide a preliminary test of the efficacy of the proposed algorithms, all
four combinations of conventional meta-evolution, meta-evolution with step
recording, meta-evolution with directional mutation and conventional meta-
evolution with both step recording and directional mutation were tested on
three simple problems. These problems included a three dimensional sym-
metric quadratic bowl (function F1 from [Fog95]), a Bohachevsky multi-
modal bowl problem (function F6 from the same work) and a very nar-
row two dimensional quadratic bowl whose axis was not aligned with either
axis (labelled F9 here to avoid conflict with F1 through F8 from [Fog95]).
These problems were not intended to provide a comprehensive inventory of
the interesting problems, but rather were simply taken as exemplars which
would highlight the contrast between previous methods and the directional
recorded-step method.

The dimensionality of the test functions used here is quite low, but the
essential difficulty posed to previous evolutionary algorithms by long narrow
valleys which are not aligned along the coordinate axes is independent of
dimension. Additional tests with dimensionality as high as 30 show the same
results as demonstrated here.

The test functions are described by the following functions:

f1(x, y, z) = x2 + y2 + z2

f6(x, y) = x2 + 2y2 − 0.3 cos(3πx)− 0.4 cos(4πy) + 0.7

f9(x, y) = (x+ y)2 + (100y − 100x)2

For this test, the evolutionary algorithm used 20 survivors each genera-
tion, each of which generated 9 progeny to create a population of 200. After
evaluating the fitness function for each member of the population, the entire
population was sorted to find the best 20 members who would survive into
the next generation.

Each algorithm was run 10 times and a median fitness at each generation
was used to compare algorithms. All programs were limited to 50 generations
or less. Generally, convergence to a solution with 10−8 of the correct value
was found within far fewer generations.
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Figure 1: Convergence for Symmetric Bowl

4 Results

The graph in 1 illustrates the convergence for the four algorithms for the
symmetric bowl (Function F1). As can be seen, the convergence of the con-
ventional meta-evolutionary strategy is slightly faster than for the modified
algorithms, but the difference in terms of number generations required to
converge is not substantial and the ultimate accuracy of the final solution is
essentially identical. It is interesting to note that the omni-directional muta-
tion rate was a close approximation of the square root of the remaining error.
This behavior is close to the theoretical optimum cooling for this problem;
that it was derived automatically by the meta-mutation was noteworthy. De-
tailed examination of the population showed that omni-directional mutation
was the dominant mechanism of exploration in the case of the symmetric
bowl.

The graph in 2 illustrates convergence for the Bohachevsky function.
Again, the difference between the algorithms is not striking, except for the
algorithm which used directional mutation without step recording. Even so,
the degradation in convergence time was less than a factor of two for di-
rectional mutation, and the loss in performance for the other methods was
minimal.

Finally, the graph in 3 illustrates the convergence rates for the narrow
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Figure 3: Convergence for Narrow Bowl

quadratic bowl.
Here, all algorithms except for directional mutation with step recording

have severe problems with convergence. The differences here are highly sig-
nificant. The difference in the case of the non-directional algorithms is due
to the fact that with symmetric mutation, if the mutation rate is much larger
than the distance to the major axis of the valley, then any mutation is likely
to fall outside of the narrow valley and thus not result in any improvement.
The effect is that as the population approaches the major axis of the valley,
the mutation rate is decreased and progress toward the optimum slows down.
Ultimately, solutions very close to the major axis are found, and the muta-
tion rate is reduced to a small value. This low mutation rate makes progress
down the major axis of the valley toward the global optimum quite slow.

It is not clear why directional mutation without step recording performs
so poorly, but early experiments with different meta-mutation operators ap-
peared to perform better, so the problem may have had more to do with
the meta-mutation itself than with an inherent defect in the pure directional
mutational algorithm.

The algorithm which used directional mutation and step recording per-
formed very well in the narrow valley problem. Detailed examination of
evolving populations showed that populations far from the major axis of the
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valley quickly evolved directional mutations which took them to the major
axis. Once there, the populations converted their directional mutations into
omni-directional mutations which were in turn converted into directional mu-
tations strongly oriented along the major axis of the valley. This quickly lead
to bracketing of the solution at which point, the population variance shrank
rapidly. Once the population had adapted to the nature of the problem, con-
vergence proceeded essentially identically to the convergence behavior noted
for the symmetric bowl problem (f1).

It is instructive to compare these results with those from the table on page
173 of [Fog95]. The relevant parts of that table are reproduced in 1 and ex-
tended with the current results. Note that the meta-evolutionary algorithms
(the new columns which are labelled MEP, MEP+RS and MEP+RS+DM)
are clearly able to produce results which are comparable with previous evolu-
tionary algorithms (the original columns which were labelled GA, DPE and
EP in the original work). It should be remembered that when examining this
table that comparing the various forms of evolutionary programming after
such an extreme degree of convergence is not terribly meaningful.

Function GA DPE EP
F1 2.8× 10−4 1.1× 10−11 3.1× 10−66

F6 2.629× 10−3 1.479× 10−9 5.193× 10−96

Function MEP MEP+RS MEP+RS+DM
F1 3.3× 10−71 3.2× 10−125 1.5× 10−51

F6 0 0 0

Table 1: Convergence of Various Evolutionary Algorithms (GA = Genetic Al-
gorithm, DPE = GA with Dynamic Parameter Estimation, EP = Evolution-
ary Programming, MEP = Meta-Evolutionary algorithms, RS = Recorded
Step, DM = Directional Mutation)

5 Summary and Discussion

This work clearly shows that meta-evolutionary strategies can be effective in
accelerating the convergence of evolutionary programming algorithms under
certain conditions.

Furthermore, the directional mutation and recorded step do not signifi-
cantly degrade this performance on simple problems. They can provide highly
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signficant improvement in convergence speed on problems which involve long
narrow valleys.

The directional search algorithm presented here has a number of clear
advantages over carrying a full covariance matrix with each member of the
population. These include lower storage requirements, lower computational
overhead, and an intuitively appealing method for doing meta-mutation.

Although the algorithms describe here perform well on moderately multi-
modal problems such as the Bohachevsky functions, they probably trade off
some of the ability to avoid locally optimal solutions in return for their ability
to explore narrow valleys. This ability may need to be recovered for some
problems. One way that this might be done is to allow only parent/progeny
competition. This would help avoid the situation where a solution is found
which is good enough to swamp the survivor pool with progeny before more
obscure solutions are found. Another method for attacking this problem
would be introduce speciation.

In partially or wholly decomposable problems with high dimensionality,
narrow valleys can occur which are aligned with the axes rather than aligned
arbitrarily. In these cases, it the cost of the directional mutation algorithm
given here might be better spent by keeping a separate mutation rate for
each dimension. Each of these mutation rates could be subjected to the
self-similar exponential mutation described in this paper. Another option
would be to keep the directional mutation, and expand the omni-directional
mutation rate to one mutation rate per parameter. Whether either of these
changes would actually enhance performance is an open question.

The use of a Cauchy distribution for the directional mutation is also an
intriguing possibility. As was noted earlier, the use of Cauchy distributions
in problems similar to the long narrow valley examined here could severely
degrade convergence. This is because of the fact that multi-variate Cauchy
distributions are not rotationally invariant. One intriguing option for a hy-
brid approach is to use a Cauchy distribution for the directional mutation
while retaining a normal distribution for the omni-directional mutation. Such
a hybrid would retain the rotationally invariant properties of the algorithm
described here while taking advantage of the desirable aspects of the use of
the Cauchy distribution.

Another interesting avenue for further research is to combine step record-
ing and directional mutation with more conventional self-adaptation of mu-
tation rates for each parameter. This combination might provide the ad-
vantages of recorded step methods when solving largely separable problems
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without losing the ability of directional mutation to deal with narrow non-
separable valleys. The cost of this hybrid would be the requirement to keep
2n meta-parameters with each member of the population instead of the n+1
meta-parameters required by the methods described here.

Overall, step recording and the directional mutation operator described in
this report seem to provide strong advantages for optimizing certain classes
of problems. The experiments described here provide an initial indication of
how large these advantages can be. Further work is needed to characterize
the interactions between these innovative techniques and other methods.
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