Skip to main content

What does the landscape of a Hopfield associative memory look like?

  • Conference paper
  • First Online:
Evolutionary Programming VII (EP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Included in the following conference series:

  • 179 Accesses

Abstract

We apply evolutionary computations to the Hopfield's neural network model of associative memory. In the model, some of the appropriate configurations of synaptic weights give the network a function of associative memory. One of our goals is to obtain the distribution of these configurations in the synaptic weight space. In other words, our aim is to learn a geometry of a fitness landscape defined on the space. For the purpose, we use evolutionary walks to explore the fitness landscape in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amit, D. J. (1989) Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press.

    Google Scholar 

  • Bray, A., and M. Moore (1980) Metastable States in Spin Glasses. Journal of Physics C: Solid State Physics 13, ppL469–L476.

    Google Scholar 

  • Fogel, D. B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press.

    Google Scholar 

  • Fogel, L. J., A. J. Owens, and M. J. Walsh (1966) Artificial Intelligence through Simulated Evolution. Wiley.

    Google Scholar 

  • Fontana, W., and P. Schuster (1987) A Computer Model of Evolutionary Optimization. Biophysical Chemistry 26, pp123–147.

    Google Scholar 

  • Gardner, E. (1988) The Phase Space of Interactions in Neural Network Models. Journal of Physics 21A, pp257–270.

    Google Scholar 

  • Hebb, D. O. (1949) The Organization of Behavior. Wiley.

    Google Scholar 

  • Hopfield, J. J. (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences, USA 79, pp 2554–2558.

    Google Scholar 

  • Imada, A., and K. Araki (1997a), Random Perturbations to Hebbian Synapses of Associative Memory using a Genetic Algorithm. J. Mira, R. Moreno-Díaz, and J. Cabestany (Eds.) Proceedings of International Work-Conference on Artificial and Natural Neural Networks. Springer Verlag, Lecture Notes in Computer Science No. 1240, pp398–407.

    Google Scholar 

  • Imada, A., and K. Araki (1997b) Evolution of Hopfield Model of Associative Memory by the Breeder Genetic Algorithm. T. Bäck (Ed.) Proceedings of the 7th International Conference on Genetic Algorithms, Morgan Kaufmann, pp784–791.

    Google Scholar 

  • Kauffman, S. A., and S. Levin (1987) Towards a General Theory of Adaptive Walks on Rugged Landscapes. Journal of Theoretical Biology 128, pp11–45.

    Google Scholar 

  • Kauffman, S. A. (1993) The origin of Order: Self-organization and Selection in Evolution. Oxford University Press.

    Google Scholar 

  • Komlós, J., and R. Paturi (1988) Convergence Results in an Associative Memory Model. Neural Networks 1, pp239–250.

    Google Scholar 

  • Macken, C., P. Hagan, and A. Perelson (1991) Evolutionary Walks on Rugged Landscapes. SIAM Journal of Applied Mathematics 51, pp799–827.

    Google Scholar 

  • Maynard Smith, J. (1970) Natural Selection and the Concept of a Protein Space. Nature 225. pp563–564.

    Google Scholar 

  • Weinberger, E. D. (1990) Correlated and Uncorrelated Fitness Landscapes and How to Tell the Difference. Biological Cybernetics 63, pp325–336.

    Google Scholar 

  • Wright, S. (1932) The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. Proceedings of the 6th International Congress of Genetics, pp356–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Imada, A., Araki, K. (1998). What does the landscape of a Hopfield associative memory look like?. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040816

Download citation

  • DOI: https://doi.org/10.1007/BFb0040816

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics