
Evolving Heuristics for Planning

Ricardo Aler, Daniel Borrajo, Pedro Isasi

Universidad Carlos III de Madrid
Butarque 15

28911 Legan~s (Madrid), Espafia
e-mail: { aler@inf, dborrajo@ia,isasi@gaia}.uc3m.es

Abs t r ac t . In this paper we describe EvoCK, a new approach to the ap-
plication of genetic programming (GP) to planning. This approach starts
with a traditional AI planner (PRODIGY) and uses GP to acquire control
rules to improve its efficiency. We also analyze two ways to introduce
domain knowledge acquired by another method (HAMLET) into EvoCK:
seeding the initial population and using a new operator (knowledge-based
crossover). This operator combines genetic material from both an evolv-
ing population and a non-evolving population containing background
knowledge. We tested these ideas in the blocksworld domain and ob-
tained excellent results.

1 I n t r o d u c t i o n

Problem solving aims to achieve a set of goals from an initial s tate by using oper-
ators that represent the different actions available in a task domain. Traditional
approaches [16, 14] use domain independent planners for generating plans. Some
more innovative approaches to problem solving use genetic programming [9].
This approach was star ted by Koza [8, 9], who evolved a planner tha t solved a
very specific set of problems in the blocksworld domain. Handley [5-7] used GP
to evolve plans for specific problems in the blocksworld domain. 1 Muslea [13]
generalized, extended, and formalized this idea, and showed how any planning
problem could be t ranslated to an equivalent GP problem. He tested it success-
fully in several domains.

Spector [15] proposed and analyzed three ways in which GP could be used
for planning:

- to evolve a plan for a specific problem in a specific domain (Handley's and
Muslea's approach);

- to evolve a partially universal planner in a specific domain (like Koza 's ap-
proach), that is, a planner that is able to solve problems which have the
same initial s tate but different goals states; and

- to evolve a fully universal planner in a specific domain, "capable of achieving
a range of goal conditions from a range of initial conditions" [15].

1 A similar approach in the GA field was used by Davidor [2] to evolve trajectories for
a robot arm.

746

All the three approaches were tested in the blocksworld by Spector. Moreover,
in the third approach, he considered only problems with three blocks, though it
was shown that it managed to solve s o m e problems with four blocks. It is clear
tha t a more general approach is needed.

In the three approaches considered, it is not always possible to write an
informative fitness function. I t is very easy in those problems tha t involve motion,
where closeness to a goal can be measured as a distance. But in other cases (like
Handley's light switch problem) that is not possible, and the fitness function
becomes a count of the number of unsatisfied goals. In problems where there are
many goals of this kind, the fitness function becomes informative, like Muslea's
briefcase problem. However, in an extreme case, with just one goal to achieve, all
the feedback the fitness function could return about the worth of a plan would
be just 0 or 1. This is too coarse for GP to get much profit from. Even when
writing an informative fitness function is possible, it requires an extra domain
knowledge beyond the description of the domain. So far, this knowledge must
be supplied by the programmer. 2

We are interested ill applying GP to planning in a general, problem-independent,
domain-independent way. So, in this paper we explore a different approach to
genetic planning, E v o C K , where traditional approaches and GP are successfully
combined.

2 E v o C K C o n t e x t

Instead of trying to evolve a fully universal domain-independent planner, we
s tar t with a tradit ional domain-independent planner, and see where GP can
help. PRODIGY4.0 is such a domain-independent planner; more specifically, it is
a means-ends analysis nonlinear planner [16]. However, planning becomes im-
practical for large problems [1]. At several points in PRODIGY'S reasoning cycle,
it has no guidance to make a decision, making a weak syntactic-based decision.
PRODIGY can be supplied with domain-dependent search knowledge so that its
decisions are guided. Here is where GP can be used for planning: instead of
evolving a whole planner, we evolve the domain-dependent control knowledge
that PRODIGY lacks.

PRODIGY has four kinds of decision points where control knowledge can help
to make a bet ter decision in its reasoning cycle: a

- Select a goal from a set of pending goals.
- Select an operator to achieve a goal.
- Select a binding for the chosen operator.
- Choose whether to apply the operator with the bindings or to subgoal on an

unachieved goal.

2 Of course, this can be seen from a positive perspective too: it allows us to introduce
more domain knowledge into the planner than traditional methods

3 There are other decision points that can be guided by control knowledge, but we will
not use them.

747

There are other methods that have been applied to the production of control
knowledge. Most of them involve acquiring control rules by observing a large set
of traces of problems successfully solved by the planner [11, 3]. HAMLET [1] is
one of such systems. It learns control rules incrementally, and it has been shown
that HAMLET's control rules improve monotonically when more and more traces
are supplied. So the question is: why use GP for this task at all? There are two
main reasons. First, GP search biases are very different from these methods. If
we can combine search biases from two different methods, it is expected that we
will get solutions that would not have been obtained by using just one of the
methods alone. In our case, that combination can be achieved by introducing
domain knowledge into GP obtained by HAMLET when acquiring the control
rules. The second advantage is GP's flexibility: very different search biases can
be used and changed in GP very easily, without changing the method itself.

3 E v o C K : The System

The main aims of this paper are twofold. First, we want to improve a planning
system (PRODIGY4.0) by means of GP-generated control-rules. Second, we want
to study the effects of injecting background knowledge coming from a machine
learning method into a GP system.

3.1 O v e r v i e w

The main relations of our system (EvoCK) with the planner (PRODIGY) and
the previous learning system (HAMLET) are shown in Figure 1. The generation of
control knowledge consists of two learning phases. In the first one (dashed lines
in the figure), HAMLET learns from a randomly generated set of problems. For
E v o C K purposes, there are two main outputs: a set of control rules, tha t will
configure the initial population of E v o C K ; and a set of background knowledge,
used as a secondary non-evolving population for E v o C K as explained later.
For each problem, PRODIGY also generates a search tree, which is stored by the
Search Monitor for later use in the second phase. During the second phase (solid
line in the figure), E v o C K evolves to obtain an individual for guiding the search
of a solution, using or not using HAMLET outputs.

, . , I n d i v i d u a l

, i

. . , , . . _ ,

Fig. 1. Relations of EvoCK with HAMLET and PRODIGY.

748

EvoCK individuals are sets of PRODIGY control rules. One important point
is that both initial and genetically generated individuals must be syntactically
correct. In the literature, such structures are called "constrained structures" [9]
�9 For that purpose, we use a grammar that describes how individuals must be
generated�9 Following, a E v o C K individual with just one control-rule is shown:

if (and (true (clear <objl>))
(candidate-goals (on <objl> <obj2>)) (holding <obj3>))

then (select-goal (on <obj l> <obj2>))

The previous individual means that if there is an object A with no objects
on it and we are trying to achieve either to have that object A on another object
B or to hold another object then we should work next in trying to put object A
on object B. Often, individuals have several control-rules. There are four kinds
of control-rules, one for each kind of decision PRODIGY makes (see section 2).

E v o C K uses a tournament method for selecting the parents as well as for
choosing an individual that offspring will replace. The fitness function is made
of several components. One of them (called "performance in fitness cases") tests
how well the individual performs when PRODIGY tries to solve the training plan-
ning problems when guided by the individual (acting as a set of control rules)�9
The rest of the components test properties of the individual itself, such as the
number of variables in the rule, the number of rules, the size in nodes, etc. All
individuals in the tournament are compared according to the first component. If
there are draws, the second component is used, and so on. The first component
("performance in fitness cases") will be explained in detail in the subsection 3.2.

E v o C K genetic operator set includes the standard set (crossover and mu-
tation), another set to change, add and remove rules from an individual, the
knowledge-based crossover (which will be explained in subsection 3.3) and the
join operator, which has been specially tailored for control-rules. Its effects won't
be analyzed in this paper.

3.2 P e r f o r m a n c e in f i tness cases

The "performance in fitness cases" measure deserves a longer explanation. It
uses the search trees obtained from PRODIGY in Figure I. Control rules allow
PRODIGY to prune the search tree, so an immediate performance function could
be the number of nodes expanded by PRODIGY when trying to solve a problem.
The better an individual (control rule) would do, the fewer nodes would PRODIGY

expand. However, this performance measure would discriminate poorly between
bad individuals: they would just exhaust the maximum time allocated to fitness
evaluation and return exactly the same performance measure. Therefore, the
performance function must be made both more efficient and more informative.
Following paragraphs explain how this is done.

In the first phase, all of the fitness cases are supplied to PRODIGY. Then, it
will produce several solutions in the form of a set of paths in the search tree,

749

from the initial s tate to the state where the goals are satisfied. Solutions can be
sorted according to a quality criterion. We retain only the best solutions of the
set produced by PRODIGY. The set of best solutions is just a par t of the search
tree, where all leaf-nodes are goal states of the problem to be solved (and the
root is the initial state). Let us call it the "best solutions tree."

The performance of an individual C (a set of control rules) over a set of
problems Pi is measured as:

PF(C) = Sc,i + Ei

For each P~, we calculate the number of steps Sc# tha t PRODIGY, being
guided by C, manages to follow in the best solutions tree. Then we divide it by
the total number of steps C should have followed. Ei is the expected number of
steps left to get to a leaf node. It is "expected" because not all paths leading from
a given node to a leaf node will have the same length, so the expected length is
averaged over all of them. N is the number of problems E v o C K is being trained
with.

This performance function turns out to be much more t ractable and infor-
mative.

3.3 The knowledge-based crossover operator

This is a crossover operator that is very useful if it is possible to represent
background (or domain knowledge) as GP individuals, that is, individuals that
would represent approximations to a solution, a partial solution, a good building
block for a solution, or a good start ing point to get to a solution. In some cases,
we could just seed the initial population with those individuals and let it evolve.
But we want to explore another possibility: using those individuals as a source
from where a genetic operator might get some profit.

In our case, when HAMLET is in the process of inducing control rules, it
generates a subproduct tha t consists of all the successful and failed decisions that
PRODIGY made when solving a problem. These decisions were made in each of the
four kinds of decision points we saw in section 2. It is straightforward to convert
those decisions to a control rule format and then to a E v o C K individual. Those
decisions are too specific, and dependent of the point where that decision was
made. But they seemed like a good source of materials for a crossover operator.
That is exactly what the knowledge-based crossover is: a s tandard crossover but,
instead of choosing the second parent from the population, it draws it from a
population tha t is known to be a good source of genetic material.

4 E x p e r i m e n t a l R e s u l t s

We carried out several empirical tests to study two ways to inject domain knowl-
edge coming from HAMLET into E v o C K :

750

- To introduce control rules generated by HAMLET into the initial population
("HAMLET individual" in Figure 1).

- To use the knowledge-based crossover operator ("Background Knowledge
Population" in Figure I).

Therefore, there are four categories of experiments:

I. RSRM: Random initial population (that is, a random seed) and random
mutation.

2. RSKC: Random seed and knowledge-based crossover.
3. HSRM: Initial population seeded by HAMLET (HAMLET seed) and random

mutation.
4. HSKC: Initial population seeded by HAMLET and knowledge-based crossover.

Each category is divided into two configurations:

- E v o C K with a population of two individuals. As the selection method is
a tournament, our genetic search amounts to some sort of hill climbing in
this case. Besides the knowledge-based crossover operator, no other crossover
operators will be used, just mutation.

- E v o C K with a population of 50 individuals. Even with this small population
size, in GP terms, we obtained quite impressive results. This configuration
is identified by prefixing P to the name. Thus, P H S K C will identify the
configuration with the following characteristics: HAMLET seed, knowledge-
based crossover and a population of 50.

Therefore, we have eight sets of experiments (or configurations): RSRM,
RSKC, HSRM, HSKC, PRSRM, PRSKC, PHSRM and PHSKC.

We use a steady state GP with a generational gap of 1. Tournaments are
held for both selection and replacement. The number of evaluations is limited to
100,000 which amounts to about 242 generations. 410 planning cases randomly
generated for the blocksworld domain were used as fitness cases. They contain
problems of various degrees of difficulty (their number of goals ranging from 1
to 5 and their number of objects ranging from 2 to 10).

To test best of run individuals, 416 test problems were used. Their number
of goals ranging from 5 to 50 and their number of objects ranging from 2 to 50.
The testing cases are extremely harder than the fitness cases, its purpose being
to check whether GP has generalized well. About 10 experiments were carried
out for each experimental configuration, obtaining a best-of-run individual from
each experiment.

The blocksworld domain consist of blocks that can be picked up by a robot
arm, stocked on other blocks or put down on a table. A problem in this domain
consists of an initial state, that is, a configuration of blocks, and a final state
to be reached. The goal state is composed of several predicates (or goals) to
be fulfilled by the planner. A plan that transforms the initial state in the final
state is a solution to the problem. The more goals and blocks are included in a
problem, the more difficult it is to solve that problem. For instance, problems

751

with 3 goals and 4 blocks are easily solved by PRODIGY, but problems with 50
goals and 50 objects are seldom solved (this will be seen later in Table 2).

Table 1 summarizes the results obtained from the different configurations.
The first four columns show data related to the best of the best individuals
obtained by each configuration: the generation at which the individual was ob-
tained, the number (and percentage) of testing problems solved by it (P. Solved),
and the number of control rules (size). Column "averages" shows the average
number of testing problems solved. It has been obtained by averaging results
from the several best-of-run individuals belonging to each experimental con-
figuration. Results for PRODIGY working alone and results for PRODIGY using
control-rules generated by HAMLET are also shown.

P. solved
PRODIGY 86 (21%)
HAMLET 238 (58%) 12

I~SRM 236 242 (59%) 5 99
PRSRM 195 331 (81%) 1 161

I~SKC 212 196 (48%) 4 165
PI~SKC 89 331 (81%) 1 ~ 166
HSRM 202 320 (78%) 4 229

PHSRM 154 358 (87%) 3! 276
HSKC 199 358 (87%) 3i 307

PHSKC 237 358 (87%) 4! 248

Table 1. This table shows the results obtained by the best individual produced by
each of the configurations. "P. Solved" is the number of testing problems solved by
said individuals.

5 D i s c u s s i o n

First, Table 1 shows clearly that E v o C K improves on PRODIGY even when it
uses no background knowledge. PRODIGY alone is able to solve 86 test problems
only, whereas RSRM managed to solve 242 test problems. It even manages to
perform bet ter than HAMLET. PRSRM results are even better, outperforming
RSRM. However, better results are obtained when using background knowledge:
PHSRM, HSKC and PHSKC solve 358 problems. This is better than the seed
supplied by HAMLET, which solves 238 problems only. Table 2 shows that this
is a qualitative improvement, because HSKC (and PHSKC) manages to solve
problems of a degree of difficulty (50 goals and 50 objects) that HAMLET control-
rules alone were unable to cope with in the allocated time. Also, (P)HSKC
improves on HAMLET results on all categories of problems, except by a small
percentage in the (5,10) category.

752

Goals I #Objects
50 50
20 50
20 20
10i 50
10 20
10 15
5 5O
5 2O
5 15
5 10

~0PRODIGY
0 0
6 31
6 27

21 66
11 54
30 46
15 68
15 82 I
40 82 I
50 84

~7oHAMLET %EvoCK
53
79
65
95
80
82
80
94
98
83

Table 2. This table shows the percentage of testing problems solved by the three
systems: PRODIGY, HAMLET and EvoCK for each category of problems.

Second, E v o C K individuals tend to be much smaller than HAMLET ones
(even when they are better). Table 1 shows that even though HSKC best in-
dividual performs bet ter than HAMLET one, it only has 3 control rules (vs. 12
in HAMLET). Smaller individuals will be interpreted faster by PRODIGY. This
results show how HAMLET search biases (which result in the HAMLET gener-
ated control-rules) and E v o C K search biases (the parsimony component in the
fitness function) can be successfully combined.

Third, the use of the knowledge-based crossover operator makes a significant
difference. To see whether the results are consistent in most of the runs, average
results will be analyzed (see Table 1). RSKC consistently beats RSRM results
(165 vs. 99 on average), while HSKC is also better than HSRM. PRSKC ira-
provement with respect to PRSRM is less noticeable (166 vs. 161 on average)
and there is no improvement at all in PHSKC on PHSRM results (248 vs. 276 on
average). This latter anomaly is a mat ter for further research. Seeding the initial
population with a good individual (HAMLET generated control rules) makes also
a significant difference: all HAMLET-seeded configurations beat the corresponding
randomly seeded ones on average.

Fourth, experiments with a population size of 50 tend to outperform (on
average) pseudo hill-climbing. This suggests that either crossover or bigger pop-
ulation sizes are having a noticeable effect (there is an anomaly in the fourth set
of experiments, though: HSKC beats PHSKC).

6 A N e w P e r s p e c t i v e f o r I n j e c t i n g B a c k g r o u n d

K n o w l e d g e i n t o G P

We believe to have identified a possible new way to inject domain knowledge (or
background knowledge) into GP. There are many ways in which it is possible to
give background knowledge to a GA. For instance, seeding the initial population
with good individuals, adapting the genetic operators to the problem at hand
(or creating new ones specially tailored for the task), etc. We ourselves have used

753

those methods in this article (HAMLET seed, the knowledge-based crossover and
the join operator). Also, in GP it is possible to use constrains (to constraint the
evolving structures [9, 12]) and therefore, they reduce the search space. And of
course, it is always possible to select the function and terminals most appropriate
to the domain or to the problem.

We think our work points to a new direction: do not evolve the whole pro-
gram, evolve only that part of the program that you do not know how to program,
or that could be improved. In our case, we star ted with a program (PRODIGY, a
domain independent planner), we saw tha t there were some par ts of the program
that could be improved (PRODIGY'S four decision points) and we let GP evolve
those parts. But what was actually evolving was a population of whole planners,
because the fitness function was computed from the performance of the entire
planner, not only of the control rules. PRODIGY was designed with that sort of
decomposition of the planning process in mind. But we believe tha t this idea
could be applied to other problems as well. For instance, if a p rogrammer con-
siders tha t a problem solution needs two nested loops, s /he could just fix that
in the program and leave the rest blank. Then, GP would fill in the blanks.

7 C o n c l u s i o n s

The major contribution of this paper is to show that Genetic Programming can
be successfully applied in a new way to traditional planning problems, by means
of acquiring control rules for a domain independent planner. For tha t purpose,
we have studied two ways in which domain knowledge can be injected into GP:
by seeding the initial population with a good individual coming from another
learning method (HAMLET) and by means of the knowledge-based crossover op-
erator. Both of them work very well in this case. Although knowledge-based
crossover is specially adequate for this task, we believe it could be used in other
GP problems as well.

Along the way, we have realized we were also introducing domain knowledge
into GP implicitly, by fixing part of the program that was to evolve (PRODIGY),
and evolving the rest (PRODIGY'S decision points). We believe tha t this idea,
obvious as it seems, could be exploited in many other GP problems.

We have shown tha t different biases from different search methods (HAMLET
and E v o C K , in this case) can be combined successfully. This allowed us to
obtain very good and very small and efficient individuals from a Hamlet seed.

References

I. Daniel Borrajo and Manuela Veloso. Lazy incremental learning of control knowl-
edge for efficiently obtaining quality plans. A I Review Journal. Special Issue on
Lazy Learning, 11(1-5):371-405, February 1997.

2. Y. Davidor. Genetic Algorithms and Robotics. The IEEE Computer Society Press,
1992.

754

3. Tara A. Estlin and Raymond Mooney. Hybrid learning of search control for partial-
order planning. In New Directions in A I Planning, pages 115-128. IOS Press, 1996.

4. Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial
Intelligence, 62(2):255-301, 1993.

5. S. Handley. The automatic generation of plans for a mobile robot via genetic pro-
gramming with automatically defined functions. In Proceedings of the Fifth Work.
shop on Neural Networks: An International Conference on Computational Intelli.
gence: Neural Networks, Fuzzy Systems, Evolutionary Programming, and Virtual
Reality, 1991.

6. S. Handley. The genetic planner: The automatic generation of plans for a mobile
robot via genetic programming. In Proceedings of the Eighth IEEE International
Symposium on Intelligent Control, 1993.

7. Simon G. Handley. The automatic generations of plans for a mobile robot via
genetic programming with automatically defined functions. In Kenneth E. Kinnear,
Jr., editor, Advances in Genetic Programming, chapter 18, pages 391-407. MIT
Press, 1994.

8. J. R. Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In N. S. Sridharan, editor, Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence IJCAI-89, volume 1, pages 768-774.
Morgan Kaufmann, 20-25 August 1989.

9. John R. Koza. Genetic Programming: On the Programming of Computers by Nat-
ural Selection. MIT Press, Cambridge, MA, USA, 1992.

10. J.R. Koza. Genetic Programming II. The MIT Press, 1994.
11. Steven Minton. Learning Effective Search Control Knowledge: An Explanation-

Based Approach. Kluwer Academic Publishers, Boston, MA, 1988.
12. David J. Montana. Strongly typed genetic programming. Evolutionary Computa-

tion, 3(2):199-230, 1995.
13. Ion Muslea. SINERGY: A linear planner based on genetic programming. In Fourth

European Conference on Planning, Toulouse, Franc% 24-26 September 1997.
14. J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order planner

for ADL. In Proceedings of KR-92, pages 103-114, 1992.
15. L. Spector. Genetic programming and AI planning systems. In Proceedings of

Twelfth National Conference on Artificial Intelligence, Seattle, Washington, USA,
1994. AAAI Press/MIT Press.

16. Manuela Veloso, Jaime Carbonell, Alicia P6rez, Daniel Borrajo, Eugene Fink, and
Jim Blythe. Integrating planning and learning: The P R O D I G Y architecture. Journal
of Experimental and Theoretical AI, 7:81-120, 1995.

