Skip to main content

Limitations of linear identification and control techniques for flexible robots with nonlinear joint friction

  • Section 1: Control
  • Conference paper
  • First Online:
Experimental Robotics I

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 139))

  • 294 Accesses

Abstract

A state feedback controller with acceleration feedforward has been developed for accurate tracking control of a flexible one-link robot. The model, on which the controller is based, is the result of a least squares parameter estimation algorithm that has been developed especially for the test setup. The algorithm divides the total model into two submodels in series, and estimates their parameters separately. The controller does not use a direct end point position measurement, but estimates this position from the measured motor angle and strain gauge signals. Acceleration feedforward is introduced in the state feedback controller to reduce tracking errors to negligible values. Integral control eliminates positioning errors caused by nonlinear motor friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. and Swevers, J. 1988. Identification and control of a single degree of freedom positioning system. 13th International seminar on modal analysis, K.U.Leuven, Leuven, Belgium.

    Google Scholar 

  2. Aström, K. J. and Wittenmark, B. 1984. Computer controlled systems. Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  3. Clary, J. 1984. Robust algorithms in adaptive control. Ph.D. Thesis, Stanford University, Department of Electrical Engineering.

    Google Scholar 

  4. Demeester, F. 1987. Selection of applicable off-line computation algorithms for trajectory control. Technical report, task 3154, Esprit project 1561:Sacody.

    Google Scholar 

  5. Duque, M. and Samaan, M. 1988. Partial state LQ and GPC adaptive control: An experimental evaluation. Eighth International Conference on Analysis and Optimization of Systems. Springer-Verlag.

    Google Scholar 

  6. Eppinger, S. D. and Seering, W. P. 1988. Modeling robot flexibility for end point force control. IEEE International Conference on Robotics and Automation.

    Google Scholar 

  7. Faillot, JL. 1987. Examine state of the art on control of flexible structures. Technical report, task 3121, Esprit project 1561:Sacody.

    Google Scholar 

  8. Franklin G. F. and Powell J. D. 1980. Digital control of dynamic systems. Addison-Wesley.

    Google Scholar 

  9. Goodwin, G. C. and Sin, K. S. 1984. Adaptive filtering predicion and control. Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  10. Lembregts, F. Swevers, J. 1988. Development and evaluation of off-line identification techniques. Technical report, task 612, Esprit project 1561:Sacody.

    Google Scholar 

  11. Ljung, L. and Soderstrom, T. 1983. Theory and practice of recursive identification. Cambridge: MIT Press.

    Google Scholar 

  12. Ljung, L. 1987. System identification: theory for the user. Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  13. Mertens, M. and Van der Auweraer, H. 1989. The complex stiffness method to detect and identify nonlinear dynamic behaviour of SDOF systems. Mechanical Systems and Signal Processing, 3(1)37–54.

    Google Scholar 

  14. Preumont, A. 1987. Spillover alleviation for nonlinear active control of vibration. J.Guidance, 11(2):124–130.

    Google Scholar 

  15. Ramakrishnan, S. 1985. Experimental identification and control of the tip position of a flexible, single link manipulator. Ph.D. Thesis, University of California, Berkeley, Department of Mechanical Engineering.

    Google Scholar 

  16. Rovner M. D. 1987. Experiments toward on-line identification and control of a very flexible one-link manipulator. Int. J. Robotics Res. 6(3):3–19.

    Google Scholar 

  17. Van Den Bossche, J. 1989. RODYM: a new approach to robot metrology. Technical report, K.U.Leuven.

    Google Scholar 

  18. Schmitz, E. 1984. Initial experiments on the end-point control of a flexible one-link robot. Int. J. Robotics Res. 3(3):62–75.

    Google Scholar 

  19. Sidman, M. 1986. Adaptive control of a flexible structure. Ph.D. Thesis, Stanford University, Department of Electrical Engineering.

    Google Scholar 

  20. Swevers, J. Moonen, M. 1988. A black box identification algorithm for analysis of structural dynamics. 13th International seminar on modal analysis, K.U.Leuven, Leuven, Belgium.

    Google Scholar 

  21. Van Der Auweraer, H. 1987. Development and evaluation of advanced measurement methods for experimental modal analysis. Ph.D. Thesis, Dept. of Mechanical Engineering, K.U. Leuven, Leuven, Belgium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vincent Hayward Oussama Khatib

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Swevers, J., Adams, M., De Schutter, J., Van Brussel, H., Thielemans, H. (1990). Limitations of linear identification and control techniques for flexible robots with nonlinear joint friction. In: Hayward, V., Khatib, O. (eds) Experimental Robotics I. Lecture Notes in Control and Information Sciences, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0042511

Download citation

  • DOI: https://doi.org/10.1007/BFb0042511

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52182-2

  • Online ISBN: 978-3-540-46917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics