Skip to main content

Video-rate visual servoing for robots

  • Section 3: Perception
  • Conference paper
  • First Online:
Experimental Robotics I

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 139))

Abstract

This paper presents some recent experimental results in robotic visual servoing. A general-purpose computer in conjunction with special purpose video processing hardware, in particular a newly available hardware region-growing and moment-generation unit, has been used to visually close the robot position loop at video field rates, 60Hz.

The paper reviews prior work in the area of visual-servoing, and the related topic of real-time image segmentation. The architecture of an experimental system is discussed, and its' dynamics are investigated both experimentally and analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Anadan. Measuring visual motion from image sequences. Technical Report COINS 86–16, University of Massachusetts, Mar 87.

    Google Scholar 

  2. C.H. Anderson, P.J. Burt, and G.S. van der Wal. Change detection and tracking using pyramid transform techniques. Proceeding of SPIE, 579:72–78, Sept 1985.

    Google Scholar 

  3. Helen L. Anderson, Ruzena Bajcsy, and Max Mintz. Adaptive image segmentation. Technical Report MS-CIS-88-26, University of Pennsylvania, April 1988.

    Google Scholar 

  4. R.L. Andersonn. A Robot Ping-Pong Player. MIT Press, 1988.

    Google Scholar 

  5. R.L. Andersonn. Real-time gray-scale video processing using a moment-generating chip. IEEE Journal of Robotics and Automation, RA-1(2):79–85, June 1985.

    Google Scholar 

  6. Peter I. Corke and Richard P. Paul. Video-rate visual servoing for robots. Technical Report MS-CIS-89-18, GRASP Lab, University of Pennsylvania, Feb 1989.

    Google Scholar 

  7. P.Y. Coulon and M. Nougaret. Use of a TV camera system in closed-loop position control of mechnisms., pages 117–127. IFS (Publications) Ltd, U.K, 1983.

    Google Scholar 

  8. S. Cussons. A real-time operator for the segmentation of blobs in imaging sensors. Proc. IEE Electronic Image Processing Conference., 214:51–57, 1982.

    Google Scholar 

  9. Datacube Inc. Installation and Software, 1988.

    Google Scholar 

  10. S.D. Eppinger and W. P. Seering. Introduction to dynamic models for robot force control. IEEE Control Systems Magazine, pages 48–52, 1987.

    Google Scholar 

  11. C.L. Fennema and W.B. Thompson. Velocity determination in scenes containing several moving objects. Computer Graphics and Image Processing, 9:301–315, 1979.

    Google Scholar 

  12. J.P. Froith, C. Eisenbarth, E. Enderle, H. Geisselmann, H. Ringschauser, and G. Zimmermann. Real-time processing of binary images for industrial applications. Springer-Verlag, Germany, 1981.

    Google Scholar 

  13. A.L. Gilbert. Video data conversion and real-time tracking. Computer, 14(8):50–56, Aug 1981.

    Google Scholar 

  14. R.M. Haralick and L.G. Shapiro. Survey: Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29:100–132, 1985.

    Google Scholar 

  15. V. Hayward and R.P. Paul. Robot manipulator control under Unix, RCCL. International Journal of Robotics Research, 5(4):94–111, 1986.

    Google Scholar 

  16. J. Hill and W.T. Park. Real time control of a robot with a mobile camera. 9th International Symposium on Industrial Robots, Mar 13–15, 1979.

    Google Scholar 

  17. B.K.P. Horn and B.G. Schunck. Determining optical flow. Artifical Intelligence, 17:185–203, 1981.

    Google Scholar 

  18. Integrated Systems Inc. MATRIXx User's Guide, 1986.

    Google Scholar 

  19. R. Jain. Dynamic scene analysis using pixel-based processes. Computer, 14(8):12–18, Aug 1981.

    Google Scholar 

  20. M. Kabuka, J. Desoto, and J. Miranda. Robot vision tracking system. IEEE Transactions on Industrial Electronics, 35(1):40–51, Feb 88.

    Google Scholar 

  21. M. Kabuka, E. McVey, and P. Shironoshita. An adaptive approach to video tracking. IEEE Journal of Robotics and Automation, 4(2):228–236, April 88.

    Google Scholar 

  22. John Lloyd. Implementation of a robot control development environment. Master's thesis, McGill University, December 1985.

    Google Scholar 

  23. A.G. Makhlin. Stability and sensitivity of servo vision systems. Proc 5th Int Conf on Robot Vision and Sensory Controls — RoViSeC 5, pages 79–89, 29–31 Oct, 1985.

    Google Scholar 

  24. W.N. Martin and J.K. Aggarwal. Survey. dynamic scene analysis, 1978.

    Google Scholar 

  25. O.R. Mitchell and S.M. Lutton. Segmentation and classification of targets in flir imagery. SPIE, 155:83–90, 1978.

    Google Scholar 

  26. D.W. Murray and B.F. Buxton. Reconstructing the optic flow field from edge motion: An examination of two different approaches. First Conference on Artificial Intelligence Applications, pages 382–388, Dec 84.

    Google Scholar 

  27. H. Nagel. Represenation of moving rigid objects based on visual observations. Computer, 14(8):29–39, Aug 1981.

    Google Scholar 

  28. R.E. Prajoux. Visual Tracking. Machine Intelligence Research Applied to Industrial Automation. SRI International, August 1979.

    Google Scholar 

  29. P.K. Sahoo, S. Soltani, and A.K.C. Wong. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing, 41:233–260, 1988.

    Google Scholar 

  30. C.J. Samwell and G.A. Cain. The BAe (BRACKNELL) automatic detection, tracking and classification system. 2nd Int.Conf. on Image Processing and Applications, IEE-265:164–170, JUne 1986.

    Google Scholar 

  31. A.C. Sanderson, L.E. Weiss, and C.P. Neuman. Dynamic sensor-based control of robots with visual feedback. IEEE Journal of Robotics and Automation, RA-3(5):404–417, Oct 1987.

    Google Scholar 

  32. W.B. Thompson and S.T. Barnard. Lower-level estimation and interpretation of visual motion. Computer, 14(8):20–28, Aug 1981.

    Google Scholar 

  33. H. Tropf, H. Geisselmann, and J.P. Foith. Some applications of the fast vision system s.a.m. Workshop on Industrial Applications of Machine Vision Conf. Record, pages 73–79, May 3–5, 1982.

    Google Scholar 

  34. Vision Systems Limited. APA-512MX Area Parameter Accelerator User Manual, Oct 87.

    Google Scholar 

  35. P. Vuylsteke, P. Defraeye, A. Oosterlinck, and H. Van den Berghe. Video rate recognition of plane objects. Sensor Review, pages 132–135, July 1981.

    Google Scholar 

  36. A.M. Waxman and K. Wohn. Contour evolution, neighborhood deformation, and global image flow: Planar surfaces in motion. International Journal of Robotics Research, 4(3):95–108, Fall 85.

    Google Scholar 

  37. Joan S. Weszka. A survey of threshold selection techniques. Computer Graphics and Image Processing, 7:259–265, 1978.

    Google Scholar 

  38. D. E. Whitney. Historical perspective and state of the art in robot force control. Proc. 1985 IEEE Int. Conf. on Robotics and Automation, pages 262–8, 1985.

    Google Scholar 

  39. Wind River Systems Inc. VxWorks Reference Manual, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vincent Hayward Oussama Khatib

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Corke, P.I., Paul, R.P. (1990). Video-rate visual servoing for robots. In: Hayward, V., Khatib, O. (eds) Experimental Robotics I. Lecture Notes in Control and Information Sciences, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0042533

Download citation

  • DOI: https://doi.org/10.1007/BFb0042533

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52182-2

  • Online ISBN: 978-3-540-46917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics