Skip to main content

Dynamic algebras as a well-behaved fragment of relation algebras

  • Invited Papers
  • Conference paper
  • First Online:
Algebraic Logic and Universal Algebra in Computer Science (ALUACS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 425))

Abstract

The varieties RA of relation algebras and DA of dynamic algebras are similar with regard to definitional capacity, admitting essentially the same equational definitions of converse and star. They differ with regard to completeness and decidability. The RA definitions that are incomplete with respect to representable relation algebras, when expressed in their DA form are complete with respect to representable dynamic algebras. Moreover, whereas the theory of RA is undecidable, that of DA is decidable in exponential time. These results follow from representability of the free intensional dynamic algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. G. Birkhoff. On the structure of abstract algebras. Proc. Cambridge Phil. Soc, 31, 1935.

    Google Scholar 

  2. G. Birkhoff. Lattice Theory. Volume 25, A.M.S. Colloq. Publications, 1967.

    Google Scholar 

  3. C. Brink. Boolean modules. Journal of Algebra, 71:291–313, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  4. R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal structures. In Proc. Conf. on Category Theory and Computer Science, LNCS, Springer-Verlag, Manchester, September 1989.

    Google Scholar 

  5. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.

    MATH  Google Scholar 

  6. L.H. Chin and A. Tarski. Distributive and modular laws in the arithmetic of relation algebras. Univ. Calif. Publ. Math., 1:341–384, 1951.

    MATH  MathSciNet  Google Scholar 

  7. J.W. de Bakker and W.P. de Roever. A calculus for recursive program schemes. In M. Nivat, editor, Automata, Languages and Programming, pages 167–196, North Holland, 1972.

    Google Scholar 

  8. R. Dedekind. Essays on the Theory of Numbers. Open Court Publishing Company, 1901. Translation by W.W. Beman of Stetigkeit und irrationale Zahlen (1872) and Was sind und was sollen die Zahlen? (1888), reprinted 1963 by Dover Press.

    Google Scholar 

  9. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

    MATH  Google Scholar 

  10. R.P. Dilworth. Noncommutative residuated lattices. Trans. AMS, 46:426–444, 1939.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. De Morgan. On the syllogism, no. IV, and on the logic of relations. Trans. Cambridge Phil. Soc., 10:331–358, 1864.

    Google Scholar 

  12. P.C. Eklof. Ultraproducts for algebraists. In Handbook of Mathematical Logic, pages 105–137, North Holland, 1977.

    Google Scholar 

  13. M.J Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. JCSS, 18(2), 1979.

    Google Scholar 

  14. L. Fuchs. Partially Ordered Algebraic Systems. Pergamon Press, 1963.

    Google Scholar 

  15. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

    Article  Google Scholar 

  16. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  17. B. Jónsson. Varieties of relation algebras. Algebra Universalis, 15:273–298, 1982.

    MATH  MathSciNet  Google Scholar 

  18. B. Jónsson and A. Tarski. Representation problems for relation algebras. Bull. Amer. Math. Soc., 54:80,1192, 1948.

    Google Scholar 

  19. B. Jónsson and A. Tarski. Boolean algebras with operators. Part I. Amer. J. Math., 73:891–939, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Jónsson and A. Tarski. Boolean algebras with operators. Part II. Amer. J. Math., 74:127–162, 1952.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies, pages 3–42, Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  22. D. Kozen. On the duality of dynamic algebras and Kripke models. In E. Engeler, editor, Proc. Workshop on Logic of Programs 1979, LNCS 125, pages 1–11, Springer-Verlag, 1979.

    Google Scholar 

  23. D. Kozen. A representation theorem for models of *-free PDL. Technical Report RC7864, IBM, September 1979.

    Google Scholar 

  24. D. Kozen. A representation theorem for models of *-free PDL. May 1979. Manuscript.

    Google Scholar 

  25. D. Kozen. A representation theorem for models of *-free PDL. In Proc. 7th Colloq. on Automata, Languages, and Programming, pages 351–362, July 1980.

    Google Scholar 

  26. D. Kozen. On induction vs. *-continuity. In D. Kozen, editor, Proc. Workshop on Logics of Programs 1981, LNCS 131, pages 167–176, Springer-Verlag, 1981.

    Google Scholar 

  27. D. Kozen and R. Parikh. A decision procedure for the propositional μ-calculus. In E. Clarke and Kozen D., editors, Proc. Workshop on Logics of Programs 1983, LNCS 164, pages 313–325, Springer-Verlag, 1983.

    Google Scholar 

  28. D. Kozen and J. Tiuryn. Logics of Programs. Technical Report 89-962, Dept. of Computer Science, Cornell University, 1989. To appear in: van Leeuwen (ed.), Handbook of Theoretical Computer Science, North Holland, Amsterdam, 1989.

    Google Scholar 

  29. R.C. Lyndon. The representation of relational algebras. Ann. of Math., Ser 2, 51:707–729, 1950.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

    Google Scholar 

  31. M. Makkai. On PCΔ classes in the theory of models. Publications of Math. Inst. Hung. Acad. Sci., 9:159–194, 1964.

    MATH  MathSciNet  Google Scholar 

  32. J.D. Monk. On representable relation algebras. Michigan Math. J., 11:207–210, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  33. I. Németi. Every free algebra in the variety generated by the representable dynamic algebras is separable and representable. Theoretical Computer Science, 17:343–347, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  34. K.C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California, Berkeley, 1984. 157+iv pp.

    Google Scholar 

  35. K.C. Ng and A. Tarski. Relation algebras with transitive closure, Abstract 742-02-09. Notices Amer. Math. Soc., 24:A29–A30, 1977.

    Google Scholar 

  36. R. Parikh. A completeness result for a propositional dynamic logic. In LNCS 64, pages 403–415, Springer-Verlag, 1978.

    Google Scholar 

  37. C.S. Peirce. Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of Boole's calculus of logic. In Collected Papers of Charles Sanders Peirce. III. Exact Logic, Harvard University Press, 1933.

    Google Scholar 

  38. V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th Ann. IEEE Symp. on Foundations of Comp. Sci., pages 109–121, October 1976.

    Google Scholar 

  39. V.R. Pratt. A practical decision method for propositional dynamic logic. In Proc. 10th Ann. ACM Symp. on Theory of Computing, pages 326–337, San Diego, May 1978.

    Google Scholar 

  40. V.R. Pratt. Dynamic Algebras: Examples, Constructions, Applications. Technical Report MIT/LCS/TM-138, M.I.T. Laboratory for Computer Science, July 1979.

    Google Scholar 

  41. V.R. Pratt. Models of program logics. In 20th Symposium on foundations of Computer Science, San Juan, October 1979.

    Google Scholar 

  42. V.R. Pratt. Dynamic algebras and the nature of induction. In 12th ACM Symposium on Theory of Computation, Los Angeles, April 1980.

    Google Scholar 

  43. V.R. Pratt. A near optimal method for reasoning about action. Journal of Computer and System Sciences, 2:231–254, April 1980. Also MIT/LCS/TM-113, M.I.T., Sept. 1978.

    Article  MathSciNet  Google Scholar 

  44. V.R. Pratt. A decidable mu-calculus. In Proc. 22nd IEEE Conference on Foundations of Computer Science, pages 421–427, October 1981.

    Google Scholar 

  45. V.R. Pratt. Modeling concurrency with partial orders. International Journal of Parallel Programming, 15(1):33–71, February 1986.

    Article  MATH  MathSciNet  Google Scholar 

  46. V.N. Redko. On defining relations for the algebra of regular events (Russian). Ukrain. Mat. Z., 16:120–126, 1964.

    MATH  MathSciNet  Google Scholar 

  47. E. Schröder. Vorlesungen über die Algebra der Logik (Exakte Logik). Dritter Band: Algebra und Logik der Relative. B.G. Teubner, Leipzig, 1895.

    Google Scholar 

  48. K. Segerberg. A completeness theorem in the modal logic of programs. Notices of the AMS, 24(6):A-552, October 1977.

    Google Scholar 

  49. M. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40:37–111, 1936.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Tarski. On the calculus of relations. J. Symbolic Logic, 6:73–89, 1941.

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Tarski. Contributions to the theory of models. III. Indag. Math, 17:56–64, 1955.

    MathSciNet  Google Scholar 

  52. A. Tarski and S. Givant. A Formalization of Set Theory Without Variables. American Math. Soc., 1987.

    Google Scholar 

  53. A. Van Gelder. A satisfiability tester for non-clausal propositional calculus. Information and Computation, 79(1), October 1988.

    Google Scholar 

  54. M. Ward and R.P. Dilworth. Residuated lattices. Trans. AMS, 45:335–354, 1939.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Clifford H. Bergman Roger D. Maddux Don L. Pigozzi

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pratt, V. (1990). Dynamic algebras as a well-behaved fragment of relation algebras. In: Bergman, C.H., Maddux, R.D., Pigozzi, D.L. (eds) Algebraic Logic and Universal Algebra in Computer Science. ALUACS 1988. Lecture Notes in Computer Science, vol 425. Springer, New York, NY. https://doi.org/10.1007/BFb0043079

Download citation

  • DOI: https://doi.org/10.1007/BFb0043079

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97288-6

  • Online ISBN: 978-0-387-34804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics