Skip to main content

Computable invariance

  • Session 5: Computability
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1276))

Included in the following conference series:

Abstract

In Computable Analysis each computable function is continuous and computably invariant, i.e. it maps computable points to computable points. On the other hand, discontinuity is a sufficient condition for non-computability, but a discontinuous function might still be computably invariant. We investigate algebraic conditions which guarantee that a discontinuous function is sufficiently discontinuous and sufficiently effective such that it is not computably invariant. Our main theorem generalizes the First Main Theorem ouf Pour-El and Richards (cf. [18]). We apply our theorem to prove that several set-valued operators are not computably invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Brattka, Grade der Nichtstetigkeit in der Analysis, Diplomarbeit, Fern Univer-sität Hagen (1993)

    Google Scholar 

  2. V. Brattka, Recursive characterization of computable real-valued functions and relations, Theoretical Computer Science 162 (1996) 45–77

    Google Scholar 

  3. V. Brattka, Computable selection in analysis, in: K.-I Ko & K. Weihrauch, eds., Proc. of the Workshop on Computability and Complexity in Analysis, Informatik Berichte, Fern Universität Hagen 190 (1995) 125–138

    Google Scholar 

  4. V. Brattka, Order-free recursion on the real numbers, Mathematical Logic Quarterly 43 (1997)

    Google Scholar 

  5. A. Chou, K.-I Ko, Computational complexity of two-dimensional regions, SIAM J. on Comput. 24 (1995) 923–947

    Google Scholar 

  6. R. Engelking, General Topology, Heldermann, Berlin (1989)

    Google Scholar 

  7. A. Grzegorczyk, On the definition of computable real continuous functions, Fund. Math. 44 (1957) 61–71

    Google Scholar 

  8. P. Hertling, Topologische Komplexitätsgerade von Funktionen mit endlichem Bild, Informatik-Berichte, Fern Universität Hagen 152 (1993)

    Google Scholar 

  9. K.-I Ko, Complexity Theory of Real Functions, Birkhäuser, Boston (1991)

    Google Scholar 

  10. K.-I Ko, A polynomial-time computable curve whose interior has a nonrecursive measure, Theoretical Computer Science 145 (1995) 241–270

    Google Scholar 

  11. K.-I Ko & K. Weihrauch, On the measure of two-dimensional regions with polynomial-time computable boundaries, in: Porc. of the 11 th IEEE Conference on Computational Complexity, to appear (1996)

    Google Scholar 

  12. K.-I Ko, On the complexity of fractal dimensions and Julia sets, Theoretical Computer Science, submitted (1996)

    Google Scholar 

  13. K. Kuratowski, Topology, Vol. I&II, Academic Press, New York (1966, 1968)

    Google Scholar 

  14. Ch. Kreitz & K. Weihrauch, Compactness in constructive analysis revisited, Annals of Pure and Applied Logic 36 (1987) 29–38

    Google Scholar 

  15. D. Lacombe, Extension de la notion de fonction recursive aux fonctions d'une ou plusieurs variables relles I-III, Comptes Rendus 240/241 (1955) 2478–2480/13-14,151–153,1250–1252

    Google Scholar 

  16. J.R. Myhill, A recursive function, defined on a compact interval and having a continuous derivative that is not recursive, Michigan Math. J. 18 (1971) 97–98

    Google Scholar 

  17. U. Mylatz, Vergleich unstetiger Funktionen in der Analysis, Diplomarbeit, FernUniversität Hagen (1992)

    Google Scholar 

  18. M.B. Pour-El & J. Richards, Computability in Analysis and Physics, Springer, Berlin (1989)

    Google Scholar 

  19. Th. von Stein, Vergleich nicht konstruktiv lösbarer Probleme in der Analysis, Diplomarbeit, Fern Universität Hagen (1989)

    Google Scholar 

  20. K. Weihrauch, Computability, Springer, Berlin (1987)

    Google Scholar 

  21. K. Weihrauch, The degrees of discontinuity of some Translators between representations of the real numbers, Informatik-Berichte, FernUniversität Hagen 129 (1992)

    Google Scholar 

  22. K. Weihrauch, The TTE-interpretation of three hierarchies of omniscience principles, Informatik-Berichte, FernUniversität Hagen 130 (1992)

    Google Scholar 

  23. K. Weihrauch, Computability on computable metric spaces, Theoretical Computer Science 113 (1993) 191–210

    Google Scholar 

  24. K. Weihrauch, A Simple Introduction to Computable Analysis, Informatik Berichte 171, FernUniversität Hagen (1995)

    Google Scholar 

  25. K. Weihrauch & Ch. Kreitz, Representations of the real numbers and of the open subsets of the set of real numbers, Annals of Pure and Applied Logic 35 (1987) 247–260

    Google Scholar 

  26. Q. Zhou, Computable real-valued functions on recursive open and closed subsets of Euclidean space, Mathematical Logic Quarterly 42 (1996) 379–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tao Jiang D. T. Lee

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brattka, V. (1997). Computable invariance. In: Jiang, T., Lee, D.T. (eds) Computing and Combinatorics. COCOON 1997. Lecture Notes in Computer Science, vol 1276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0045081

Download citation

  • DOI: https://doi.org/10.1007/BFb0045081

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63357-0

  • Online ISBN: 978-3-540-69522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics