Abstract
A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels > i leaves connected components, each having at most c vertices with label i. We present a polynomial-time algorithm to find a c-vertex-ranking of a partial k-tree using the minimum number of ranks for any bounded integers c and k.
Preview
Unable to display preview. Download preview PDF.
References
H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Journal of Algorithms, 11 (1990), pp. 631–643.
H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25 (1996), pp. 1305–1317.
H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Zs. Tuza, Rankings of graphs, Proc. of the International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 903 (1994), pp. 292–304.
H.L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, Journal of Algorithms, 21 (1996), pp. 358–402.
P. de la Torre, R. Greenlaw, and A.A. Schäffer, Optimal edge ranking of trees in polynomial time, Algorithmica, 13 (1995), pp. 592–618.
J.S. Deogun, T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation and other graphs, Proc. of the 11th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 775 (1994), pp. 747–758.
I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Transactions on Mathematical Software, 9 (1983), pp. 302–325.
A.V. Iyer, H.D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Information Processing Letters, 28 (1988), pp. 225–229.
A.V. Iyer, H.D. Ratliff, and G. Vijayan, On an edge-ranking problem of trees and graphs, Discrete Applied Mathematics, 30 (1991), pp. 43–52.
M. Katchalski, W. McCuaig, and S. Seager, Ordered colorings, Discrete Mathematics, 142 (1995), pp. 141–154.
T.W. Lam and F.L. Yue, The NP-completeness of edge ranking, Manuscript, 1996.
J. van Leeuwen, Graph algorithms, In Handbook of Theoretical Computer Science, A: Algorithms and Complexity Theory, Amsterdam, North-Holland, 1990, pp. 527–631.
J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis and Applications, 11 (1990), pp. 134–172.
A. Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13, Pennsylvania State University, USA, 1988.
N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspect of tree-width, Journal of Algorithms, 7 (1986), pp. 309–322.
A.A. Schiffer, Optimal node ranking of trees in linear time, Information Processing Letters, 33 (1989/90), pp. 91–96.
X. Zhou, M.A. Kashem, and T. Nishizeki, Generalized edge-rankings of trees, Proc. of the 22nd. International Workshop on Graph-Theoretic Concepts in Computer Science (WG'96), Lecture Notes in Computer Science, Springer-Verlag, 1197 (1997), pp. 390–404.
X. Zhou, H. Nagai, and T. Nishizeki, Generalized vertex-rankings of trees, Information Processing Letters, 56 (1995), pp. 321–328.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kashem, M.A., Zhou, X., Nishizeki, T. (1997). Generalized vertex-rankings of partial k-trees. In: Jiang, T., Lee, D.T. (eds) Computing and Combinatorics. COCOON 1997. Lecture Notes in Computer Science, vol 1276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0045088
Download citation
DOI: https://doi.org/10.1007/BFb0045088
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63357-0
Online ISBN: 978-3-540-69522-6
eBook Packages: Springer Book Archive