Skip to main content

The multi-algorithmic approach to optimisation problems

  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 919))

Included in the following conference series:

  • 109 Accesses

Abstract

In this paper we describe a fundamentally new approach to the exact solution of combinatorial optimisation problems on parallel computers, based on the synergistic use of exact and stochastic/heuristic techniques. We show the effectiveness of the proposed method with reference to the 0/1 knapsack problem; by using a cluster of two IBM RISC 6000 connected via TCP/IP, we obtained an average speed-up of 3.8 on 10 instances of a problem with 5000 items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boissin, N., Lutton, J.: A Parallel Simulated Annealing Parallel Computing 19 (1993), 859–872.

    MathSciNet  Google Scholar 

  2. Chakrapani J., Skorin-Kapov, J.: Massively Parallel Tabu Search for the Quadratic Assignment Problem, Annals of Operations Research 41 (1993), 327–341.

    Article  Google Scholar 

  3. Dantzig, G. B.: Discrete Variable Extremum Problems, Operations Research 5 (1957), 266–277.

    MathSciNet  Google Scholar 

  4. Geist, G. A., Sanderam, V. S.: Network-Based Concurrent Computing on the PVM System, Concurrency: Practice and Experience, 4 (1992), 293–311.

    Google Scholar 

  5. Karp, R. M., Ramachandran, V.: Parallel Algorithms for Shared-Memory Machines, in Handbook of Th. Comput. Sci., Vol. A: Algorithms and Complexity, J. Van Leuven ed., Elsevier (1990), 869–942.

    Google Scholar 

  6. Lin, J., Storer, J. A.: Processor-Efficient Hypercube Algorithms for the Knapsack Problem, Journal of Parallel and Distributed Computing 11 (1991), 332–337.

    Article  Google Scholar 

  7. Martello, S., Toth, P.: Knapsacks Problems — Algorithms and Computer Implementations, John Wiley and Sons (1990).

    Google Scholar 

  8. Műhlenbein, H., Schomisch, M., Born, J.: The Parallel Genetic Algorithm as Function Optimizer, Parallel Computing 17 (1991), 619–632.

    Google Scholar 

  9. Sahni, S.: Approximate Algorithms for the 0–1 Knapsack Problem, Journal of ACM 23 (1975), 114–124.

    Google Scholar 

  10. Troya, J. M., Ortega, M.: A study of Parallel Branch and Bound Algorithms with Best-Bound-First Search, Parallel Computing 11 (1989), 121–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio d'Acierno .

Editor information

Bob Hertzberger Giuseppe Serazzi

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruno, G., d'Acierno, A. (1995). The multi-algorithmic approach to optimisation problems. In: Hertzberger, B., Serazzi, G. (eds) High-Performance Computing and Networking. HPCN-Europe 1995. Lecture Notes in Computer Science, vol 919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046707

Download citation

  • DOI: https://doi.org/10.1007/BFb0046707

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59393-5

  • Online ISBN: 978-3-540-49242-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics