Abstract
We present a method to automatically estimate and remove the bias field of MR images where there is a single dominant tissue class. Assuming that a multi-class image is corrupted by a multiplicative, low-frequency bias field, the method evaluates the bias field on a single tissue class, and extends it to the whole image. The algorithm works iteratively, interleaving tissue class domain and bias field estimation using B-spline.
Preview
Unable to display preview. Download preview PDF.
References
B. M. Dawant, P. Zijdenbos, and R. A. Margolin. Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Transactions on Medical Imaging, 12(4):770–781, Dec. 1993.
R. Guillemaud and M. Brady. Enhancement of MR Images. Sept. 1996.
C. R. Meyer, P. H. Bland, and J. Pipe. Retrospective Correction of MRI Amplitude Inhomogeneities. In N. Ayache, editor, Computer Vision, Virtual Reality and Robotics in Medicine, pages 513–522, Apr. 1995.
W. M. Wells III, W. Grimson, R. Kikinis, and F. A. Jolesz. Adaptive Segmentation of MRI Data. In Proceedings of CVRMed'95, volume 905 of Lectures Notes in Computer Science, pages 59–69. Springer Verlag, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gilles, S., Brady, M., Declerck, J., Thirion, JP., Ayache, N. (1996). Bias field correction of breast MR images. In: Höhne, K.H., Kikinis, R. (eds) Visualization in Biomedical Computing. VBC 1996. Lecture Notes in Computer Science, vol 1131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046950
Download citation
DOI: https://doi.org/10.1007/BFb0046950
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61649-8
Online ISBN: 978-3-540-70739-4
eBook Packages: Springer Book Archive