Abstract
A Horn clause in linear recursive programs can be represented by a relational operator, and the set of all such operators can be constructed as an algebraic framework, called closed semiring. In the closed semiring, the evaluation of a linear recursive query can be reduced to solving a linear equation. This paper focuses on multiple linear (mL) recursions, which consist of m linear recursive rules and one or more exit rules. We first prove an algebraic rewriting theorem for 2L recursions, that is, (A+B)*=B*(A+B+)*A*, where A and B are two operators corresponding to the two recursive rules. Then two applications of this theorem are described. The first application is that a 2L recursion can be always transformed into a set of single linear (1L) recursions so that some existed algorithms for 1L recursions can be utilized to evaluate 2L recursions. The other one is to weaken existing sufficient conditions for testing rule sequencability. Sequencability is a very important semantic property of mL recursions, because a mL recursion satisfying rule sequencability can be evaluated sequentially, therefore, efficiently.
Preview
Unable to display preview. Download preview PDF.
References
Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Implement Logic Programs. Proc. ACM Symp. PODS, Mar.1986, pp. 1–15
Beeri, C., Ramakrishnan, R.: On the Power of Magic. Proc. ACM Symp. PODS, Mar 1987, pp.269–283
Guh, K.C., Yu, C.: Efficient Query Processing for a Subset of Linear Recursive Binary Rules. IEEE Trans. Know. and Data Eng., Vol. 6, No.5, October 1994, pp. 842–849
Jiawei Han: Multi-Way Counting Method, Information Systems Vol. 14 No. 3 pp. 219–229, 1989
Han, J., Henschen, L.J.: Handling Redundancy in the Processing of Recursive Database Queries. Proc. 1987 ACM-SIGMOD Int'l Conf., May 1987, pp59–68
Han J., Liu, L.: Efficient Evaluation of Multiple Linear Recursions. IEEE Trans. Software Engineering, Vol. 17, No. 12, December 1991, pp. 1241–1252
Ioannidis, Y.E.: Commutativity and Its Role in the Processing of Linear Recursion. Proc. 15th Int'l Conf. on VLDB.1989, pp.155–163
Ioannidis, Y.E., Wong, E.: Towards an Algebraic Theory of Recursion. J.ACM, Vol. 38, NO.2, April 1991, pp. 329–381
Maher, M.J.: Semantics of Logic Programs. TR85/14, Dept. of Computer Science, Univ. of Melbourne, 1985
Naughton, J.F.: Compiling Separable Recursions. Proc. ACM SIGMOD Int'l Conf., June 1988, pp. 312–319
Plambeck, T.: Semigroup Techniques in Recursive Query Optimization. Proc. ACM Symp. PODS, 1990, pp. 145–153
Ramakrishnan, R., Sagiv, Y., Ullman, J.D., Vardi, M.Y.: Proof-Tree Transformation Theorems and Their Applications. Proc. ACM Symp. PODS, 1989, pp. 172–181
Saraiya, Y.P.: Polynomial-Time Program Transformations in Deductive Databases. Proc. ACM Symp. PODS, 1990, pp. 132–144
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Du, X., Ishii, N. (1995). An algebraic rewriting theorem of multiple linear recursions and its applications. In: Revell, N., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 1995. Lecture Notes in Computer Science, vol 978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049129
Download citation
DOI: https://doi.org/10.1007/BFb0049129
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60303-0
Online ISBN: 978-3-540-44790-0
eBook Packages: Springer Book Archive